1,161 research outputs found

    Gold and iodine diffusion in large area perovskite solar cells under illumination.

    Get PDF
    Operational stability is the main issue hindering the commercialisation of perovskite solar cells. Here, a long term light soaking test was performed on large area hybrid halide perovskite solar cells to investigate the morphological and chemical changes associated with the degradation of photovoltaic performance occurring within the devices. Using Scanning Transmission Electron Microscopy (STEM) in conjunction with EDX analysis on device cross sections, we observe the formation of gold clusters in the perovskite active layer as well as in the TiO2 mesoporous layer, and a severe degradation of the perovskite due to iodine migration into the hole transporter. All these phenomena are associated with a drastic drop of all the photovoltaic parameters. The use of advanced electron microscopy techniques and data processing provides new insights on the degradation pathways, directly correlating the nanoscale structure and chemistry to the macroscopic properties of hybrid perovskite devices.European Research Council (291522), European Research Council (259619

    Nanometer-scale monitoring of the quantum confined stark effect and emission efficiency droop in multiple GaN/AlN quantum disks in nanowires

    Get PDF
    21 pages, 11 figures, published in PRBInternational audienceWe report on a detailed study of the intensity dependent optical properties of individual GaN/AlN Quantum Disks (QDisks) embedded into GaN nanowires (NW). The structural and optical properties of the QDisks were probed by high spatial resolution cathodoluminescence (CL) in a scanning transmission electron microscope (STEM). By exciting the QDisks with a nanometric electron beam at currents spanning over 3 orders of magnitude, strong non-linearities (energy shifts) in the light emission are observed. In particular, we find that the amount of energy shift depends on the emission rate and on the QDisk morphology (size, position along the NW and shell thickness). For thick QDisks (>4nm), the QDisk emission energy is observed to blue-shift with the increase of the emission intensity. This is interpreted as a consequence of the increase of carriers density excited by the incident electron beam inside the QDisks, which screens the internal electric field and thus reduces the quantum confined Stark effect (QCSE) present in these QDisks. For thinner QDisks (<3 nm), the blue-shift is almost absent in agreement with the negligible QCSE at such sizes. For QDisks of intermediate sizes there exists a current threshold above which the energy shifts, marking the transition from unscreened to partially screened QCSE. From the threshold value we estimate the lifetime in the unscreened regime. These observations suggest that, counterintuitively, electrons of high energy can behave ultimately as single electron-hole pair generators. In addition, when we increase the current from 1 pA to 10 pA the light emission efficiency drops by more than one order of magnitude. This reduction of the emission efficiency is a manifestation of the efficiency droop as observed in nitride-based 2D light emitting diodes, a phenomenon tentatively attributed to the Auger effect

    Effects of Magnetic Order on the Upper Critical Field of UPt3_3

    Full text link
    I present a Ginzburg-Landau theory for hexagonal oscillations of the upper critical field of UPt3_3 near TcT_c. The model is based on a 2D2D representation for the superconducting order parameter, η⃗=(η1,η2)\vec{\eta}=(\eta_1,\eta_2), coupled to an in-plane AFM order parameter, m⃗s\vec{m}_s. Hexagonal anisotropy of Hc2H_{c2} arises from the weak in-plane anisotropy energy of the AFM state and the coupling of the superconducting order parameter to the staggered field. The model explains the important features of the observed hexagonal anisotropy [N. Keller, {\it et al.}, Phys. Rev. Lett. {\bf 73}, 2364 (1994).] including: (i) the small magnitude, (ii) persistence of the oscillations for T→TcT\rightarrow T_c, and (iii) the change in sign of the oscillations for T>T∗T> T^{*} and T<T∗T< T^{*} (the temperature at the tetracritical point). I also show that there is a low-field crossover (observable only very near TcT_c) below which the oscillations should vanish.Comment: 9 pages in a RevTex (3.0) file plus 2 postscript figures (uuencoded). Submitted to Physical Review B (December 20, 1994)

    Post-2020 biodiversity targets need to embrace climate change

    Get PDF
    Recent assessment reports by the Intergovernmental Panel on Climate Change (IPCC) and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) have highlighted the risks to humanity arising from the unsustainable use of natural resources. Thus far, land, freshwater, and ocean exploitation have been the chief causes of biodiversity loss. Climate change is projected to be a rapidly increasing additional driver for biodiversity loss. Since climate change and biodiversity loss impact human societies everywhere, bold solutions are required that integrate environmental and societal objectives. As yet, most existing international biodiversity targets have overlooked climate change impacts. At the same time, climate change mitigation measures themselves may harm biodiversity directly. The Convention on Biological Diversity's post-2020 framework offers the important opportunity to address the interactions between climate change and biodiversity and revise biodiversity targets accordingly by better aligning these with the United Nations Framework Convention on Climate Change Paris Agreement and the Sustainable Development Goals. We identify the considerable number of existing and proposed post- 2020 biodiversity targets that risk being severely compromised due to climate change, even if other barriers to their achievement were removed. Our analysis suggests that the next set of biodiversity targets explicitly addresses climate change-related risks since many aspirational goals will not be feasible under even lower-end projections of future warming. Adopting more flexible and dynamic approaches to conservation, rather than static goals, would allow us to respond flexibly to changes in habitats, genetic resources, species composition, and ecosystem functioning and leverage biodiversity's capacity to contribute to climate change mitigation and adaptation

    Multiscale correlative tomography: an investigation of creep cavitation in 316 stainless steel

    Get PDF
    Creep cavitation in an ex-service nuclear steam header Type 316 stainless steel sample is investigated through a multiscale tomography workflow spanning eight orders of magnitude, combining X-ray computed tomography (CT), plasma focused ion beam (FIB) scanning electron microscope (SEM) imaging and scanning transmission electron microscope (STEM) tomography. Guided by microscale X-ray CT, nanoscale X-ray CT is used to investigate the size and morphology of cavities at a triple point of grain boundaries. In order to understand the factors affecting the extent of cavitation, the orientation and crystallographic misorientation of each boundary is characterised using electron backscatter diffraction (EBSD). Additionally, in order to better understand boundary phase growth, the chemistry of a single boundary and its associated secondary phase precipitates is probed through STEM energy dispersive X-ray (EDX) tomography. The difference in cavitation of the three grain boundaries investigated suggests that the orientation of grain boundaries with respect to the direction of principal stress is important in the promotion of cavity formation

    Spatial and temporal variation in species-area relationships in the Fynbos biological hotspot

    Get PDF
    Species-area relations (SARs) are among the few recognized general patterns of ecology, are empirical relations giving the number of species found within an area of a given size and were initially formulated for island environments. The use of SARs has been extended to mainland environments, and to give baseline estimates of extinction rates attending habitat loss. Using current species distributions based on atlas data, we examined the spatial variation of rates of species accumulation and species-area curves for Proteaceae species for all one-minute by one-minute areas within the Cape Floristic Region, South Africa. We compared SARs for current distributions to those generated from modeled future Protea distributions following climate change. Within one biome and for two different scales, there exists a very large spatial variation in turnover rates for current Proteaceae distributions, and we show that these rates will not remain constant as climate warming progresses. As climate changes in coming years, some areas will gain species due to migration, as other areas lose species, and still other areas maintain current rates of species accumulation/turnover. Both current and future distributions show highly variable rates of species accumulation across the landscape. This means that an average species-area relationship will hide a very large interval of variation among SARs, for both current and future Proteaceae distributions. The naive use of species-area relations to estimate species extinctions following loss of current habitat, or loss of future climatically-suitable area is likely to result in erroneous predictions

    Dimensions of professional competences for interventions towards sustainability

    Get PDF
    This paper investigates sustainability competences through the eyes of professional practitioners in the field of sustainability and presents empirical data that have been created using an action research approach. The design of the study consists of two workshops, in which professional practitioners in interaction with each other and the facilitators are invited to explore and reflect on the specific knowledge, skills, attitudes and behaviours necessary to conduct change processes successfully towards sustainability in a variety of business and professional contexts. The research focuses on the competences associated with these change processes to devise, propose and conduct appropriate interventions that address sustainability issues. Labelled ‘intervention competence’, this ability comprises an interlocking set of knowledge, skills, attitudes and behaviours that include: appreciating the importance of (trying to) reaching decisions or interventions; being able to learn from lived experience of practice and to connect such learning to one’s own scientific knowledge; being able to engage in political-strategic thinking, deliberations and actions, related to different perspectives; the ability for showing goal-oriented, adequate action; adopting and communicating ethical practices during the intervention process; being able to cope with the degree of complexity, and finally being able to translate stakeholder diversity into collectively produced interventions (actions) towards sustainability. Moreover, this competence has to be practised in contexts of competing values, non-technical interests and power relations. The article concludes with recommendations for future research and practice

    3D characterization of CdSe nanoparticles attached to carbon nanotubes

    Full text link
    The crystallographic structure of CdSe nanoparticles attached to carbon nanotubes has been elucidated by means of high resolution transmission electron microscopy and high angle annular dark field scanning transmission electron microscopy tomography. CdSe rod-like nanoparticles, grown in solution together with carbon nanotubes, undergo a morphological transformation and become attached to the carbon surface. Electron tomography reveals that the nanoparticles are hexagonal-based with the (001) planes epitaxially matched to the outer graphene layer.Comment: 7 pages, 8 figure

    Evidence for a two component magnetic response in UPt3

    Get PDF
    The magnetic response of the heavy fermion superconductor UPt_3 has been investigated on a microscopic scale by muon Knight shift studies. Two distinct and isotropic Knight shifts have been found for the field in the basal plane. While the volume fractions associated with the two Knight shifts are approximately equal at low and high temperatures, they show a dramatic and opposite temperature dependence around T_N. Our results are independent on the precise muon localization site. We conclude that UPt_3 is characterized by a two component magnetic response.Comment: 5 pages, 4 figure
    • 

    corecore