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Species-area relations (SARs) are among the few recognized general patterns of ecology, are empirical relations
giving the number of species found within an area of a given size and were initially formulated for island
environments. The use of SARs has been extended to mainland environments, and to give baseline estimates of
extinction rates attending habitat loss. Using current species distributions based on atlas data, we examined the
spatial variation of rates of species accumulation and species-area curves for Proteaceae species for all one-minute
by one-minute areas within the Cape Floristic Region, South Africa. We compared SARs for current
distributions to those generated from modeled future Protea distributions following climate change. Within one
biome and for two different scales, there exists a very large spatial variation in turnover rates for current
Proteaceae distributions, and we show that these rates will not remain constant as climate warming progresses.
As climate changes in coming years, some areas will gain species due to migration, as other areas lose species, and
still other areas maintain current rates of species accumulation/turnover. Both current and future distributions
show highly variable rates of species accumulation across the landscape. This means that an average species-area
relationship will hide a very large interval of variation among SARs, for both current and future Proteaceae
distributions. The naive use of species-area relations to estimate species extinctions following loss of current
habitat, or loss of future climatically-suitable area is likely to result in erroneous predictions.

Species-area relations (SARs) are a community-level
property that arises from the combination of species’
distributions, and there is an active literature working to
understand and reproduce this linkage (He et al. 2002).
Species-area relations (SARs) have been used to char-
acterize the number of community members in island,
mainland, nested subsets of areas (see review in Begon
et al. 1996). SARs are typically fitted as power functions
(S8Az, but see Tjørve 2003), and others have argued
about how a SAR behaves for very small and very large
areas (Lomolino 2000, 2001, 2002, Williamson et al.
2001, Williamson 2003). The exponent z, a logarithmic
rate of species accumulation with increasing area
(henceforth ‘‘rate of species accumulation’’), generally

takes values from 0.15 to 0.40 (Hubbell 2001, but
see Williamson 2003). Mainland area SARs generally
tend to have lower z-values than those for oceanic island
areas, and accumulation of habitat islands tends to yield
the highest z-values, which can approach 1.0 for ‘‘inter-
provincial’’ areas (Rosenzweig 1995).

SARs have been extended for use in conservation
planning, where planners ask how small can an area be,
and still support a target number of species (Pimm et al.
1995, Brooks et al. 1997, Thomas et al. 2004)?
Whether this use is justified has been questioned
(Kinzig et al. 2000), particularly since whether SARs
depend on spatial scale (Hubbell 2001, Crawley et al.
2001, He et al. 2003) has not been adequately
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examined. In addition, there has been little attention to
how much spatial variation in rate of species accumula-
tion exists across the landscape (but see Adler et al.
2003, Adler 2004), or how a SAR might change as
climate changes. Understanding these issues is crucial if
researchers intend to continue to use SARs as predictive
models of extinction.

The Cape Floristic Region (CFR) has an exception-
ally rich flora, characterized by island-like patterns of
high species: genus ratios (Cowling 1992). We examine
316 species of the well-known Proteaceae (Rebelo
1995). SARs have previously been fitted for the western
and eastern CFR (Cowling et al. 2002) using distribu-
tion data compiled from several sources. Here, we
examine the pattern of SAR variation across the biome
and ask, 1) how much variation exists in SARs within
the biome? Pursuant to that, 2) does the typically-
assumed rate of species accumulation (z�0.25) hold
for the majority of the region? 3) Do SARs for current
species distributions hold fast under assumptions of
climate change? These questions address the consistency
and utility of this ecological pattern, lend insight into
how the biota of the CFR is spatially structured, and
inform how this spatial structure might change under
climate change. These questions are pertinent as
scientists estimate that this biome’s area will suffer a
reduction of 51�65% over the next 50 yr due to climate
change (Midgley et al. 2002a).

If our answers to the above questions are 1) not a
large amount, 2) yes, and 3) yes, then this relationship
can be considered a viable conservation tool in the
context of ongoing climatic change. We find for this
taxon at different spatial scales that different areas
within the Fynbos biome show widely varying rates of
species accumulation; this variation is so great that a
stereotypical SAR with the often-assumed z-value of
0.25 holds for only a quarter of the area of the biome.
This result leads us to hypothesize that if climate change
were to change current biomes into different biomes,
then species-area curves in those areas might also change
accordingly. We test this idea, and find that future rates
of species accumulation, as indexed by z-values from
SARs fitted from modeled future distributions, will
increase in some regions (more turnover), will remain
the same in some areas, and will decrease in some areas
(due to increased homogenization) as species respond
individually to climate warming.

Methods

Current species-area relations in the CFR

We used distribution data for 316 South African
Proteaceae species (Rebelo 1995) at two resolutions: a

one-minute grid, and a 1/20th degree grid, to construct
species-area relationships across the western Cape
region. The Proteaceae are particularly apt model
organisms for this question, as they are so well-known
� all grid cells have been surveyed � and many of these
species are restricted to the CFR, an important
consideration when constructing species-area curves
(Green et al. 2003).

Even though the Proteaceae are well-known, it may
be that some individuals were not detected, and thus
not represented in the atlas data that we analyzed. Due
to sensitivity of SARs to undetected presences, or
variation in sampling effort (Cam et al. 2002), we
used Proteaceae distributions modeled from relation-
ships between census data and variables critical for plant
growth (details of model-fitting below).

Logistic regression has been one of the more popular
techniques for modeling species distributions (Manel
et al. 1999, Collingham et al. 2000, Bailey et al. 2002,
Berg et al. 2004, Eyre et al. 2005, Carter et al. 2006).
However, in studies that compare multiple techniques,
neural network models and/or generalized additive
models (GAMs, Yee et al. 1991) outperform other
techniques (Midgley et al. 2003, Segurado et al. 2004,
Araujo et al. 2005) or give results that are in line with
results from other models (Pearson et al. 2006). A
notable exception in this literature is Manel et al.
(1999), who found that logistic regression outper-
formed neural network models for one bird species.
Since Thuiller et al. (2003) further showed that GAMs
are robust to variation in scale, using GAMs seems
reasonable for this analysis.

We fitted GAMs based on five bioclimatic variables
critical for plant growth (mean minimum temperature
of the coldest month, annual sum of daily temperatures
exceeding 188C, annual potential evaporation, summer
soil moisture days, and winter soil moisture days)
(Midgley et al. 2002a, 2003) to distribution data
from the Protea Atlas Project (PAP; Bhttp://protea.
worldonline.co.za�). We used the Agricultural Atlas
climate surface dataset (Schulze 1997, Schulze et al.
1999) to represent current climate. We did not include
other range determinants as predictors, such as histor-
ical factors or biotic interactions, since the current range
represents the realized niche of the species, which
indirectly includes biotic interactions and historic
factors. At the relatively large scale of the Cape Floristic
Region, current climate predominates as a range
determinant (Thuiller et al. 2004a, c). The Cape flora
is relatively new, with high diversication rates in recent
years due to high topographic complexity and climatic
stability (Cowling et al. 2002, 2005), so that historical
factors should be less important for determining range.
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In the GAM construction, we randomly partitioned
the data into 70% and 30% partitions for model
formation and testing, respectively (cf. Fielding et al.
1997, Guisan et al. 2005). This partitioning provided
sufficient data to make reliable calibration and enough
data to do a proper evaluation. We evaluated each
species’ model using the values obtained for the area
under the curve (AUC) of a receiver operating char-
acteristic (ROC) plot of sensitivity against (1-specificity)
(Swets 1988).

The resulting species distributions are raster dis-
tributions in 17 673 one-minute (1.5�1.8 km) grid
cells covering the ca 47 700 km2 Western Cape region.
To calculate species-area relationships, we chose a
starting cell, noting the number of species in the cell
and the area of the cell. Then we examined cells around
the starting cell in a radial fashion, accumulating area
and species, until we had gathered data on 225 cells (a
15�15 grid within the sampling region). We wished to
analyze rates of species accumulation with increasing
area for relatively small areas within a possibly hetero-
geneous landscape. We treated edge (of map) cells in
the following way. While we did the species accumula-
tions for all cells, when edge cells were within a zone of
species accumulation, then species and area calculations
were only tallied for land-based grid cells; e.g. consider
the case where the second concentric ring of grid cells
around a starting grid cell includes 7 sea and 9 land
cells. The incremental area for that second concentric
ring of cells would thus be 9 cells.

Power functions are commonly used in fitting
SARs (Scheiner 2003, Tjørve 2003), and have been
shown to work for even very small scales (Green et al.
2004, Horner-Devine et al. 2004). Power-law SARs
are expected to provide a very good fit to data,
provided that species abundance distributions are
clustered, and that the distribution of abundances
conforms to Preston’s lognormal distribution (Garcı́a
Martı́n et al. 2006). Since for species-area calculations,
there need be only one individual of a species present,
for that species to be counted, Garcı́a Martı́n et al.
(2006) extended this rule of thumb to say that power-
law formulations will work well if species ranges are
clustered, and if the range size distribution conforms
to a Preston lognormal, though these authors note that
lognormal distributions do not always provide the best
fit for many ecosystems (Garcı́a Martı́n et al. 2006
and references therein). We checked for spatial
autocorrelation (two-tailed test of Moran’s I value,
calculated in Idrisi32) to verify that species’ distribu-
tions were clustered, then fitted power functions to
log-transformed species and area data (Press et al.
1992, Williams 2000) and extracted the fitted z-value.

Models of future, climate, future distributions of
Proteaceae species, and future species-area
relationships

Using the known climatic associations from the species
distribution models (GAMs) above, we modeled ex-
pected future distributions for individual Proteaceae
species on a one-minute latitude by longitude grid at
ten-year time intervals � 2000, 2010, 2020, 2030,
2040, 2050, which we term decadal time slices. Future
(2050) climate predictions were produced by perturb-
ing the current climatic data with anomalies derived
from climatic simulations produced by the General
Circulation Model HadCM2 (Bhttp://cera-www.dkrz.de/
IPCC_DDC/IS92a/Hadley-Centre/Readme.hadcrn2�),
using IS92a emissions assumptions for CO2 equivalent
greenhouse gas concentrations, and excluding sulphate
cooling feedback. We assumed a linear change in each
climatic variable between 2000 and 2050. This assump-
tion is meant to reduce complexity in the formulation
of the models, and in the interpretation of the results.
We can imagine situations arising which involve
complex temporal shifts in the climate regime, e.g.
from any number of possible extreme events. Such
complex temporal shifts would introduce additional
complexity in interpreting results. In future work, it
would be useful and informative to compare this linear
assumption to possible outcomes from modeling
various types of nonlinear climate events.

In order to predict species’ future ranges with a
changing climate, some assumption about species’
dispersal ability must be made. Species’ dispersal ability
usually is not explicitly accounted for when projecting
future species distributions (but see Iverson et al.
1999, Williams et al. 2005, Broennimann et al. 2006,
Midgley et al. 2006). Instead, either dispersal is
assumed to be fully effective, so that ranges that have
become newly suitable are invariably colonized (‘‘un-
limited dispersal’’ hypothesis), or dispersal is assumed
to be zero, so that all individuals of the study are unable
to shift to their new ranges (‘‘no dispersal’’ hypothesis,
Thomas et al. 2004, Thuiller et al. 2005). These two
extremes encompass the range of possible migration
rates, but neither of these approximations is satisfactory,
because migration rate depends to a large extent on the
capacity of each individual species to migrate, which
itself is a composite of individuals’ various abilities. In
our study, we follow Midgley et al. (2006) (see this
paper for more details) to avoid unreliable future
potential distributions.

We calculated range shifts after 2000 using four
assumptions about dispersal limitations. First, we
estimated migration rate per decadal time slice using
the dispersal agent as a surrogate for migration
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capability. We assumed dispersal distance to be a
maximum of one grid cell per decadal time slice for
ant- and rodent-dispersed species; this is likely to be an
over-estimate, given the pattern of transport and
hoarding of seeds by these species only a few meters
from seed sources (Midgley et al. 2002b). We assumed
a maximum of three cells per time slice for wind-
dispersed species, which is at the high end of the range
determined by empirical measurements for seed dis-
persed by secondary ‘‘tumbling’’ seed dispersal (Bond
1988). The latter rate corresponds to at least 4 km in
10 yr (i.e. per fire event), or an average of 400 m in one
year, which may be considered long-distance dispersal
(Cain et al. 2000), and compares with high rates
inferred from the fossil record (Clark 1998). Second,
for every species, if any pixel became suitable under
climate change, but was geographically more distant
than the maximum dispersal distance of the given
species from the source pixel, the probability of
dispersal to that pixel was set to 0. Third, we assumed
that dispersal events occur on average every decade,
depending on decadal fires to provide the only dispersal
opportunities to these fire-adapted species-this fire
return time is probably just below average for the
CFR, but greater than the minimum required for seed
set in Proteaceae (Bond et al. 1995). Fourth, we further
assumed that bio-climatically unsuitable areas would
not persist as viable range between time slices. The
result was a set of time-slice models for each species for
each of the years 2000, 2010, 2020, 2030, 2040, and
2050 according to all four assumptions.

If rates of species accumulation for future species
distributions are different to those for current distribu-
tions, this result would have serious implications for
using these models to predict species losses under
climate change projections. Currently-known ecore-
gions, no matter how defined, are expected to change
size and location following climate change (Sala et al.
2000, Ostendorf et al. 2001, Berry et al. 2002, Scott
et al. 2002). Consequently, we used projected future
distributions to calculate future SARs, and test whether
SARs for the Proteaceae of South Africa will vary
between 2000 and 2050.

Results

Current rates of species accumulation in the CFR

In order to justify using power-law functions to fit
species-area relationships, we needed to verify that the
Cape flora species distributions are clustered, and that
the species show a lognormal distribution of range sizes.
For the Cape flora, 312 of the 316 species show
significant autocorrelation at a lag of one spatial step
(Moran’s I significantly �0, king’s rule, pB0.001 for

these 312 species). Figure 1 shows the frequency
distribution of Moran’s I values for the 316 species.
The four non-significantly spatially autocorrelated
species are shown with Moran’s I�0 in this figure.
The other bins along the x-axis are 0.20 units in width
and are labelled with the midpoint of the bin; for
example, 0.50 denotes the bin representing Moran’s I
values in the [0.40, 0.60] range, where 0.60 is included
in this bin, and 0.40 is included in the previous bin.
While we did not check for autocorrelation at larger
distance classes, it is clear from the high values at the
first distance class for many species, that these species
will also exhibit spatial autocorrelation at larger
distances.

We fitted species-area relations within the CFR, with
results shown in Fig. 2 (but see the relationship between
z and species number in the Discussion), and mapped
the z-value onto the grid cell where species accumula-
tion began (Fig. 3). While we calculated SARs and z
values for all cells, the results presented in Fig. 2 are
only for central areas of the CFR, those areas that are 8
or more cells distant from the edge of the region. For a
small number of these central areas in the western CFR
(7%, Fig. 2a), the pattern of species increase with
increasing area is upward accelerating, resembling
exponential growth. For the remaining (central) areas,
the typical form of SAR is realized in the data. Some of
these areas exhibit step-function behavior (Fig. 2b, 15%
of areas), continued slow growth of species number
with accumulating area (non-asymptoting, although an
asymptotic curve provides a good fit to the data, Fig. 2c,
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Fig. 1. Frequency distribution of Moran’s I values for a lag
distance of 1 cell-nearest neighbors, king’s rule-over all 316
species. Four species show no spatial autocorrelation (Moran’s
I values�0), while 312 species show significant spatial
autocorrelation (Moran’s I�0, pB0.001). The bins along
the x-axis are 0.20 units in width and are labelled with the
midpoint of the bin; for example, 0.50 denotes the bin
representing Moran’s I values in the [0.40, 0.60] range, where
0.60 is included in this bin, and 0.40 is included in the
previous bin.
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27% of areas), or typical, asymptotic species-area
relations (Fig. 2d, 51% of areas).

The fitted z-values, mapped in Fig. 3a, have a mean
of 0.29 and median of 0.25. The z-values range in value
from 0.06 to 0.91 (Fig. 3b); the thresholds to the lower
and upper 5% tails occur at z�0.116 and z�0.60. We
checked whether accumulating species and areas over
differing numbers of cells would affect our inference,
since, as the area of the accumulation region increases
toward the total number of grid cells available (the
entire region), the variation in calculated z-value must
decrease. We found that SARs calculated for very small
species accumulation areas, 49 cells (ca 132 km2), had
z-values spanning the range 0.09�1.12 over the CFR;
when this species accumulation area increases to larger
areas, 225 grid cells (ca 605 km2), z-values span 0.03�
0.91. (We note that z-values �1 are biologically not
very informative, but can still result from the curve-
fitting process.) This change of accumulation area size
results in z-values which are statistically indistinguish-
able (two-tailed paired t-tests); z-values obtained from
different sizes of accumulation area correlate very
strongly (correlation coefficients of 0.97�0.98).

The results presented in Fig. 2 and 3 are those using
the larger area of species accumulation. While the
average z-value is near 0.25, this large variation in values
belies textbook expectations that one z-value will work
for all areas (Rosenzweig 1995). Focusing on those areas
that have z-values near 0.25 (Fig. 3c) shows that such z-
values are realized for only about a quarter of the land
area considered here. These results call into question the
utility of one (average) species-area relationship for use
in conservation planning, for these taxa in this biome.

Future rates of species accumulation in the CFR

Even though current species distribution patterns are
characterized by quite variable SARs, if these current
SARs should remain fixed through time, we could
predict how many species will remain following climate
change. Using the projected future distributions of
Proteaceae described above, we calculated future rates of
species accumulation (mapped in Fig. 3d, as Fig. 3a).
Future rates, like current rates, show a large degree of
variation, with a very small proportion of fitted z-values
exceeding 1 (Fig. 3e). The future z-values show a mean
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Fig. 2. Results from species-area curves for Proteaceae of the western CFR (central cells, see text) can be classified into four
groups, (a) species and area values are upward accelerating, resembling exponential growth; only 7% of starting grid cells showed
this pattern, (b) 15% of starting grid cells had species-area values that demonstrate a step function pattern of increase, (c) 27% of
cells exhibit continued slow growth of species number with accumulating area, non-asymptoting, although an asymptotic curve
provides a good fit to the data. (d) 51% of cells show the expected and asymptotic form of growth.

856



of 0.42 and median of 0.33, and many areas within the
region do retain similar species accumulation values to
those of the year 2000. However, there are two notable
differences between Fig. 3a and Fig. 3d: some areas in
2050 (Fig. 3d) are unshaded, reflecting the expectation
of complete extinctions in those areas, and some areas
in 2050 have quite different rates of species accumula-
tion when compared to 2000 (Fig. 3a). To help
visualize this comparison, we overlaid the species
accumulation rates of 2000 versus those for 2050
(Fig. 3f), using a three-color scheme (Williams et al.
1998). White areas are where we did not do a
comparison, as complete extinction is expected in those
areas by 2050. Some areas show where rates of species

accumulation will have decreased, e.g. much of the west
coast of the Western Cape, while other areas show
where rates will have increased by 2050, e.g. in the
Agulhas Plain and along the Langeberg Mountains. Still
other areas show little change in z-value by 2050. These
results are consistent with analyses documenting areas
needed to ensure dispersal corridors for the Proteaceae
over the next 50 yr (Williams et al. 2005). The
differences in turnover rate (as indexed by the fitted
z-values) between 2000 and 2050 are statistically
significant (two-tailed paired t-test, equal variances,
pB10�5). Figure 4 shows the proportion of areas
experiencing rate changes of different magnitudes.
While 35% of areas will experience relatively small

Fig. 3. (a) Current (based on Proteaceae distribution data for the year 2000) rates of species accumulation. Warmer colors
indicate higher z-values, and consequently, higher rates of species turnover. (b) The frequency distribution of z-values in Fig. 2a
(marked: near 0.25). These areas are mapped in part c. (c) The portion of the Western CFR exhibiting z-values between 0.22 and
0.27 (i.e. near the typically-assumed value of z�0.25). (d) Future (2050) rates of species accumulation for Proteaceae. (e)
Frequency distribution of z-values for 2050 SARs. (f) A comparison of future (2050) rates of species accumulation with those in
2000. Black, grey, and red areas show where the z values remain relatively stable. White areas are those excluded from this
comparison because these areas are predicted to be devoid of species in 2050. Blue/green areas show where the 2000 rates will
have decreased/increased by 2050.
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changes in absolute species accumulation rate, 24% of
areas will show an increase in z-value equal in
magnitude to the typically-assumed value of 0.25, and
a further 29% of areas will show a substantial decrease
in z-value.

Discussion

We have shown that rates of species accumulation
across this landscape vary between 0.06 and 0.91, with
only a quarter of the land area showing a typically-
assumed logarithmic rate of species accumulation of
0.25. This result implies that using an average species-
area relation to predict the number of extinctions
following loss of habitat area may be inappropriate
without a consideration of the extent of variation of
local species accumulation rates within the broader area.
Even though the mean z-value across the CFR is 0.29
(median: 0.25), because of this large spatial variance in
z-value, a species-area relationship that would do well at
predicting species extinctions following loss of habitat
in one area of the CFR may, without consideration of
local context, fail miserably in another area of the CFR.

Second, we found that species-area relations will
not remain constant under expectations of biotic re-
distribution in the wake of climatic change; a crucial
difference for the whole region is that the mean z-value
over the region increases to z�0.42 (with the median
z-value increasing to z�0.33). Even disregarding the
spatial variation in species accumulation rates docu-
mented for current distributions, this latter result

implies that the use of species-area relations to calculate
species extinctions following loss of climatically-suitable
area is likely to result in erroneous predictions.

Naturally, our understanding of these species’
current and (particularly) future geographic ranges
may be incorrect in some cases, which would surely
impact our results. However, we have worked to assure
that our appreciation of current environmental affilia-
tions for these plants, and of how individual species will
react under changing climate scenarios, is as accurate as
possible. The modeled current and future distributions
of Proteaceae species are as realistic as possible (Midgley
et al. 2006), including limitations on dispersal imposed
by dispersal mode (ant, rodent, wind). Estimates of how
far any one plant species may be expected to move
within a short time span are conservative, consistent
with the idea that only a very few individuals will
achieve long distance migration, and that population
spread is not well-predicted by the mean dispersal
distance (Clark et al. 2003). Species’ individualistic
migrations in response to climate change might release
other species from competitive exclusion, further
complicating our understanding of future distributions,
but testing for these eventualities is beyond the scope of
this current paper.

The fitted SARs for the current distributions depend
upon modeled species ranges. This aspect of the analysis
might engender two criticisms. First, we have only
explored one species distribution modelling method,
which could potentially be biasing. However, in a
comparison of several species distribution models for
four species, Pearson et al. (2006) demonstrated that
GAMs provides consensual predictions and projections
compared to other techniques. The use of additional
modeling techniques might therefore, change the results
slightly, but not our inference. Second, the modeled
ranges may be more dependent on aspects of habitat,
rather than climatic factors. This type of bias would
result in the species accumulation process accumulating
the underlying habitats, so that the fitted z-values
represent rate of accumulation of habitats. This
phenomenon is not likely to be driving our results, as
the majority of the Proteaceae species considered here
have distributions that span multiple habitats, as
defined by Cowling et al. (2001).

Scale, or resolution of the analysis may be sources of
bias for the species-area calculations. We checked for
this effect and found that the resolution did not affect
our inference. Performing analyses for the same species
and study region, but at a more coarse (0.058)
resolution, does not change our quantitative results.
Further, SARs for current distributions of sub-Saharan
terrestrial birds (Manne unpubl.), with data at a 18
resolution, yield the same widely-varying rates of species
accumulation (z spanning 0.13 to 1.0�).
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Fig. 4. Frequency distribution showing absolute changes in
rate of species accumulation from 2000 to 2050; x-axis labels
represent the midpoint of the interval. Many areas (35%)
show relatively small changes in absolute z-value (z changing
in absolute value by 0.125 in either direction). Thirty-six
percent of areas show z-value increases (i.e. z2050 � z2000) equal
in magnitude to or greater than 0.25. An additional 29% of
areas show decreases in z-value of magnitudes 0.25 or more
between 2000 and 2050.
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The magnitude of the fitted z-value is likely to be
very heavily-influenced by the number of species in the
starting cell. For example, when starting with a small
number of species, the rate of accumulation may be very
rapid; however if beginning with a large number of
species, species accumulation rate necessarily must be
lower. The rate of Proteaceae species accumulation in
an area is significantly-, but not well-predicted by the
number of species in the starting area. Figure 5 shows a
plot of z-value versus species richness, for which a linear
regression model explains only 23% of the variance in
the data. Consequently, the wide variation in species
accumulation rates is not predominantly an effect of the
number of species in the starting area.

Some may think it inappropriate or speculative to
calculate SARs from future (expected) species ranges.
Our calculations here are meant to highlight the
community-level consequences of these future species
distributions. If it is too speculative to calculate SARs
from expected future ranges, then it must follow that
the prediction of future ranges is also inappropriate.

It should be borne in mind that while the results
here show that there is cause for concern over changing
patterns of beta diversity over time and expected
locations of extinctions, there are locations that are
expected to become more diverse. Increased homoge-
nization is not a blanket outcome for the Cape Floristic
Region. However, these different outcomes point out
the importance of not relying too heavily upon a simple
rule of thumb to predict numbers of species remaining
following some amount of climatic change.

It may be that ecologists have attempted to push the
predictive power of the species-area relationship farther
than is reasonable. The original species-area relationship

was conceptualized from relatively small, well-defined,
island areas that likely consisted of more homogenous
environments than those found in a mainland area. We
suspect that the wide variation in species accumulation
rates, found elsewhere with simulated distributions
(Sizling et al. 2004), may relate directly to habitat
heterogeneity (Scheiner et al. 2000, Proches et al. 2003,
Thuiller et al. 2006). An average SAR assumed, or
formulated, for an entire biome has no way to capture
such dependence, and thus should fail to capture
smaller-scale variation across the biome.

Conclusion

Climate change will likely result in Proteaceae extinc-
tions in some areas, but other areas will maintain their
current rate of turnover, and still other areas could
realize increased numbers of species and rates of species
accumulation. As well, the number of extinctions in
some areas, incurred as a result of changing climate,
may be only modest. In terms of predicting these
patterns, we have found that an average SAR for the
Fynbos biological hotspot masks a very large interval of
variation among SARs, for current Proteaceae distribu-
tions. Further, SARs as indices of turnover patterns do
not hold fast under assumptions of biotic redistribution
as climate changes. This variability of SARs in space
and time calls into question, as others have done
(Thuiller et al. 2004b), whether SARs can be applied
for conservation if the possibility of large spatial
variation in SARs is not considered (Thomas et al.
2004).
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