1,336 research outputs found

    Inorganic Photovoltaics Materials and Devices: Past, Present, and Future

    Get PDF
    This report describes recent aspects of advanced inorganic materials for photovoltaics or solar cell applications. Specific materials examined will be high-efficiency silicon, gallium arsenide and related materials, and thin-film materials, particularly amorphous silicon and (polycrystalline) copper indium selenide. Some of the advanced concepts discussed include multi-junction III-V (and thin-film) devices, utilization of nanotechnology, specifically quantum dots, low-temperature chemical processing, polymer substrates for lightweight and low-cost solar arrays, concentrator cells, and integrated power devices. While many of these technologies will eventually be used for utility and consumer applications, their genesis can be traced back to challenging problems related to power generation for aerospace and defense. Because this overview of inorganic materials is included in a monogram focused on organic photovoltaics, fundamental issues and metrics common to all solar cell devices (and arrays) will be addressed

    An analyst's take on the BPHZ theorem

    Full text link
    We provide a self-contained formulation of the BPHZ theorem in the Euclidean context, which yields a systematic procedure to "renormalise" otherwise divergent integrals appearing in generalised convolutions of functions with a singularity of prescribed order at their origin. We hope that the formulation given in this article will appeal to an analytically minded audience and that it will help to clarify to what extent such renormalisations are arbitrary (or not). In particular, we do not assume any background whatsoever in quantum field theory and we stay away from any discussion of the physical context in which such problems typically arise.Comment: Accepted versio

    Quantum control without access to the controlling interaction

    Get PDF
    In our model a fixed Hamiltonian acts on the joint Hilbert space of a quantum system and its controller. We show under which conditions measurements, state preparations, and unitary implementations on the system can be performed by quantum operations on the controller only. It turns out that a measurement of the observable A and an implementation of the one-parameter group exp(iAr) can be performed by almost the same sequence of control operations. Furthermore measurement procedures for A+B, for (AB+BA), and for i[A,B] can be constructed from measurements of A and B. This shows that the algebraic structure of the set of observables can be explained by the Lie group structure of the unitary evolutions on the joint Hilbert space of the measuring device and the measured system. A spin chain model with nearest neighborhood coupling shows that the border line between controller and system can be shifted consistently.Comment: 10 pages, Revte

    Heated-Atmosphere Airship for the Titan Environment: Thermal Analysis

    Get PDF
    Future exploration of Saturn's moon Titan can be carried out by airships. Several lighter-than-atmosphere gas airships and passive drifting heated-atmosphere balloon designs have been studied, but a heated-atmosphere airship could combine the best characteristics of both. This work analyses the thermal design of such a heated-atmosphere vehicle, and compares the result with a lighter-than-atmosphere (hydrogen) airship design. A design tool was created to enable iteration through different design parameters of a heated-atmosphere airship (diameter, number of layers, and insulating gas pocket thicknesses) and evaluate the feasibility of the resulting airship. A baseline heated-atmosphere airship was designed to have a diameter of 6 m (outer diameter of 6.2 m), three-layers of material, and an insulating gas pocket thickness of 0.05 m between each layer. The heated-atmosphere airship has a mass of 161.9 kg. A similar mission making use of a hydrogen-filled airship would require a diameter of 4.3 m and a mass of about 200 kg. For a long-duration mission, the heated-atmosphere airship appears better suited. However, for a mission lifetime under 180 days, the less complex hydrogen airship would likely be a better option

    Public engagement in local government: the voice and influence of citizens in online communicative spaces

    Get PDF
    The communications and engagement strategies of local councils play an important role in contributing to the public's understanding of local democracies, and their engagement with local issues. Based on a study of the local authority in the third largest city in the UK, Leeds, this article presents an empirically based analysis of the impact of new opportunities for public engagement afforded by digital media on the Council's communication with citizens. Drawing on over 20 face-to-face semi-structured interviews with elected politicians, Council strategists, Council communications specialists, mainstream journalists, and citizen journalists, the article explores perceptions of the Council's engagement and communication with citizens from the perspective of a range of actors involved in the engagement process. The research asks what the differing motivations behind the Council's communications and engagement strategies mean for the way that digital media are and might be used in the future to enhance the role of citizens in local governance. The research suggests that while there are no grounds for expecting digital media to displace existing channels of public engagement, digital media are beginning to play an important role in defining and reconfiguring the role of citizens within local governance

    A model of quantum reduction with decoherence

    Full text link
    The problem of reduction (wave packet reduction) is reexamined under two simple conditions: Reduction is a last step completing decoherence. It acts in commonplace circumstances and should be therefore compatible with the mathematical frame of quantum field theory and the standard model. These conditions lead to an essentially unique model for reduction. Consistency with renormalization and time-reversal violation suggest however a primary action in the vicinity of Planck's length. The inclusion of quantum gravity and the uniqueness of space-time point moreover to generalized quantum theory, first proposed by Gell-Mann and Hartle, as a convenient framework for developing this model into a more complete theory.Comment: 20 pages. To be published in Physical Review

    Electrodeposited CuInSe2 Thin Film Junctions

    Get PDF
    We have investigated thin films and junctions based on copper indium diselenide (CIS) which have been grown by electrochemical deposition. CIS is a leading candidate for use in polycrystalline thin film photovoltaic solar cells. Electrodeposition is a cost-effective method for producing thin-film CIS. We have produced both p and n type CIS thin films from the same aqueous solution by simply varying the deposition potential. A CIS pn junction was deposited using a step-function potential. Stoichiometry of the single layer films was determined by energy dispersive spectroscopy. Carrier densities of these films increased with deviation from stoichiometry, as determined by the capacitance versus voltage dependence of Schottky contacts. Optical bandgaps for the single layer films as determined by transmission spectroscopy were also found to increase with deviation from stoichiometry. Rectifying current versus voltage characteristics were demonstrated for the Schottky barriers and for the pn junction

    Quantum measurement problem and cluster separability

    Get PDF
    A modified Beltrametti-Cassinelli-Lahti model of measurement apparatus that satisfies both the probability reproducibility condition and the objectification requirement is constructed. Only measurements on microsystems are considered. The cluster separability forms a basis for the first working hypothesis: the current version of quantum mechanics leaves open what happens to systems when they change their separation status. New rules that close this gap can therefore be added without disturbing the logic of quantum mechanics. The second working hypothesis is that registration apparatuses for microsystems must contain detectors and that their readings are signals from detectors. This implies that separation status of a microsystem changes during both preparation and registration. A new rule that specifies what happens at these changes and that guarantees the objectification is formulated and discussed. A part of our result has certain similarity with 'collapse of the wave function'.Comment: 31 pages, no figure. Published versio

    Quantum theory of successive projective measurements

    Full text link
    We show that a quantum state may be represented as the sum of a joint probability and a complex quantum modification term. The joint probability and the modification term can both be observed in successive projective measurements. The complex modification term is a measure of measurement disturbance. A selective phase rotation is needed to obtain the imaginary part. This leads to a complex quasiprobability, the Kirkwood distribution. We show that the Kirkwood distribution contains full information about the state if the two observables are maximal and complementary. The Kirkwood distribution gives a new picture of state reduction. In a nonselective measurement, the modification term vanishes. A selective measurement leads to a quantum state as a nonnegative conditional probability. We demonstrate the special significance of the Schwinger basis.Comment: 6 page

    Renormalizing the Schwinger-Dyson equations in the auxiliary field formulation of λϕ4\lambda \phi^4 field theory

    Full text link
    In this paper we study the renormalization of the Schwinger-Dyson equations that arise in the auxiliary field formulation of the O(N) ϕ4\phi^4 field theory. The auxiliary field formulation allows a simple interpretation of the large-N expansion as a loop expansion of the generating functional in the auxiliary field χ\chi, once the effective action is obtained by integrating over the ϕ\phi fields. Our all orders result is then used to obtain finite renormalized Schwinger-Dyson equations based on truncation expansions which utilize the two-particle irreducible (2-PI) generating function formalism. We first do an all orders renormalization of the two- and three-point function equations in the vacuum sector. This result is then used to obtain explicitly finite and renormalization constant independent self-consistent S-D equations valid to order~1/N, in both 2+1 and 3+1 dimensions. We compare the results for the real and imaginary parts of the renormalized Green's functions with the related \emph{sunset} approximation to the 2-PI equations discussed by Van Hees and Knoll, and comment on the importance of the Landau pole effect.Comment: 20 pages, 10 figure
    • …
    corecore