8,339 research outputs found

    Flux-Confinement in Dilatonic Cosmic Strings

    Full text link
    We study dilaton-electrodynamics in flat spacetime and exhibit a set of global cosmic string like solutions in which the magnetic flux is confined. These solutions continue to exist for a small enough dilaton mass but cease to do so above a critcal value depending on the magnetic flux. There also exist domain wall and Dirac monopole solutions. We discuss a mechanism whereby magnetic monopolesmight have been confined by dilaton cosmic strings during an epoch in the early universe during which the dilaton was massless.Comment: 8 pages, DAMTP R93/3

    D-string on near horizon geometries and infinite conformal symmetry

    Get PDF
    We show that the symmetries of effective D-string actions in constant dilaton backgrounds are directly related to homothetic motions of the background metric. In presence of such motions, there are infinitely many nonlinearly realized rigid symmetries forming a loop (or loop like) algebra. Near horizon (AdS) D3 and D1+D5 backgrounds are discussed in detail and shown to provide 2d interacting field theories with infinite conformal symmetry.Comment: 5 pages, revtex, no figures; symmetry transformations for BI action added, coupling of D-string to RR 2-form in D1-D5 background corrected; final version, to appear in Phys. Rev. Let

    Nucleating Black Holes via Non-Orientable Instantons

    Get PDF
    We extend the analysis of black hole pair creation to include non- orientable instantons. We classify these instantons in terms of their fundamental symmetries and orientations. Many of these instantons admit the pin structure which corresponds to the fermions actually observed in nature, and so the natural objection that these manifolds do not admit spin structure may not be relevant. Furthermore, we analyse the thermodynamical properties of non-orientable black holes and find that in the non-extreme case, there are interesting modifications of the usual formulae for temperature and entropy.Comment: 27 pages LaTeX, minor typos are correcte

    Gravitating Fluxbranes

    Get PDF
    We consider the effect that gravity has when one tries to set up a constant background form field. We find that in analogy with the Melvin solution, where magnetic field lines self-gravitate to form a flux-tube, the self-gravity of the form field creates fluxbranes. Several exact solutions are found corresponding to different transverse spaces and world-volumes, a dilaton coupling is also considered.Comment: 14 pages, 5 figure

    Isometric Embedding of BPS Branes in Flat Spaces with Two Times

    Get PDF
    We show how non-near horizon p-brane theories can be obtained from two embedding constraints in a flat higher dimensional space with 2 time directions. In particular this includes the construction of D3 branes from a flat 12-dimensional action, and M2 and M5 branes from 13 dimensions. The worldvolume actions are determined by constant forms in the higher dimension, reduced to the usual expressions by Lagrange multipliers. The formulation affords insight in the global aspects of the spacetime geometries and makes contact with recent work on two-time physics.Comment: 29 pages, 10 figures, Latex using epsf.sty and here.sty; v2: reference added and some small correction

    Birth of Closed Strings and Death of Open Strings during Tachyon Condensation

    Full text link
    The tremendous progress achieved through the study of black holes and branes suggests that their time dependent generalizations called Spacelike branes (S-branes) may prove similarly useful. An example of an established approach to S-branes is to include a string boundary interaction and we first summarize evidence for the death of open string degrees of freedom for the homogeneous rolling tachyon on a decaying brane. Then, we review how to extract the flat S-brane worldvolumes describing the homogeneous rolling tachyon and how large deformations correspond to creation of lower dimensional strings and branes. These S-brane worldvolumes are governed by S-brane actions which are on equal footing to D-brane actions, since they are derived by imposing conformality on the string worldsheet, as well as by analyzing fluctuations of time dependent tachyon configurations. As further examples we generalize previous solutions of the S-brane actions so as to describe multiple decaying and nucleating closed fundamental strings. Conceptually S-brane actions are therefore different from D-brane actions and can provide a description of time dependent strings/branes and possibly their interactions.Comment: 15 pages, 7 eps figures; invited review for Modern Physics Letters A, including new solutions for S-brane actions. v2 published version, minor typos correcte

    The Finiteness Requirement for Six-Dimensional Euclidean Einstein Gravity

    Get PDF
    The finiteness requirement for Euclidean Einstein gravity is shown to be so stringent that only the flat metric is allowed. We examine counterterms in 4D and 6D Ricci-flat manifolds from general invariance arguments.Comment: 15 pages, Introduction is improved, many figures(eps

    Accelerating universes driven by bulk particles

    Full text link
    We consider our universe as a 3d domain wall embedded in a 5d dimensional Minkowski space-time. We address the problem of inflation and late time acceleration driven by bulk particles colliding with the 3d domain wall. The expansion of our universe is mainly related to these bulk particles. Since our universe tends to be permeated by a large number of isolated structures, as temperature diminishes with the expansion, we model our universe with a 3d domain wall with increasing internal structures. These structures could be unstable 2d domain walls evolving to fermi-balls which are candidates to cold dark matter. The momentum transfer of bulk particles colliding with the 3d domain wall is related to the reflection coefficient. We show a nontrivial dependence of the reflection coefficient with the number of internal dark matter structures inside the 3d domain wall. As the population of such structures increases the velocity of the domain wall expansion also increases. The expansion is exponential at early times and polynomial at late times. We connect this picture with string/M-theory by considering BPS 3d domain walls with structures which can appear through the bosonic sector of a five-dimensional supergravity theory.Comment: To appear in Phys. Rev. D, 16 pages, 3 eps figures, minor changes and references adde

    Dynamic and Thermodynamic Stability and Negative Modes in Schwarzschild-Anti-de Sitter

    Get PDF
    The thermodynamic properties of Schwarzschild-anti-de Sitter black holes confined within finite isothermal cavities are examined. In contrast to the Schwarzschild case, the infinite cavity limit may be taken which, if suitably stated, remains double valued. This allows the correspondence between non-existence of negative modes for classical solutions and local thermodynamic stability of the equilibrium configuration of such solutions to be shown in a well defined manner. This is not possible in the asymptotically flat case. Furthermore, the non-existence of negative modes for the larger black hole solution in Schwarzschild-anti-de Sitter provides strong evidence in favour of the recent positive energy conjecture by Horowitz and Myers.Comment: 21 pages, 5 figures, LaTe

    Non-asymptotically flat, non-AdS dilaton black holes

    Full text link
    We show that previously known non-asymptotically flat static black hole solutions of Einstein-Maxwell-dilaton theory may be obtained as near-horizon limits of asymptotically flat black holes. Specializing to the case of the dilaton coupling constant α2=3\alpha^2 = 3, we generate from the non-asymptotically flat magnetostatic or electrostatic black holes two classes of rotating dyonic black hole solutions. The rotating dyonic black holes of the ``magnetic'' class are dimensional reductions of the five-dimensional Myers-Perry black holes relative to one of the azimuthal angles, while those of the ``electric'' class are twisted dimensional reductions of rotating dyonic Rasheed black strings. We compute the quasi-local mass and angular momentum of our rotating dyonic black holes, and show that they satisfy the first law of black hole thermodynamics, as well as a generalized Smarr formula. We also discuss the construction of non-asymptotically flat multi-extreme black hole configurations.Comment: Minor corrections. 2 references added. To appear in Physical Review
    • …
    corecore