Abstract

We show that previously known non-asymptotically flat static black hole solutions of Einstein-Maxwell-dilaton theory may be obtained as near-horizon limits of asymptotically flat black holes. Specializing to the case of the dilaton coupling constant α2=3\alpha^2 = 3, we generate from the non-asymptotically flat magnetostatic or electrostatic black holes two classes of rotating dyonic black hole solutions. The rotating dyonic black holes of the ``magnetic'' class are dimensional reductions of the five-dimensional Myers-Perry black holes relative to one of the azimuthal angles, while those of the ``electric'' class are twisted dimensional reductions of rotating dyonic Rasheed black strings. We compute the quasi-local mass and angular momentum of our rotating dyonic black holes, and show that they satisfy the first law of black hole thermodynamics, as well as a generalized Smarr formula. We also discuss the construction of non-asymptotically flat multi-extreme black hole configurations.Comment: Minor corrections. 2 references added. To appear in Physical Review

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019