1,916 research outputs found

    Design of organic Rankine cycles using a non-conventional optimization approach

    Get PDF
    The organic Rankine cycle is a suitable technology for utilizing low grade heat for electricity production. Compared to the traditional steam Rankine cycle, the organic Rankine cycle is beneficial, since it enables the choice of a working fluid which performs better than steam at low heat input temperatures and at lowpower outputs. Selecting the process layout of the organic Rankine cycle and the working fluid are two key design decisions which are critical for the thermodynamic and economic performance of the cycle. The prevailing approach used in the design and optimization of organic Rankine cycles is to model the heatexchangers by assuming a fixed minimum temperature difference. The objective of this work is to assess the applicability of this conventional optimization approach and a non-conventional optimization approach. In thenon-conventional optimization approach a total UA-value (the product of the overall heat transfer coefficient and the heat transfer area) is assigned to the cycle, while the distribution of this total UA-value to each of the heat exchangers is optimized. Optimizations are carried out for three different marine engine waste heatsources at temperatures ranging from 90 °C to 285 °C. The results suggest that the conventional optimization approach is not suitable for estimating the performance potential when the temperature profiles in the heat exchangers are closely matched. This is exemplified for the fluid MDM where the temperature profile of preheating aligns with the heat source fluid and for the zeotropic mixture R32/R134a where the temperature profile of condensation aligns with the cooling water. Furthermore, the conventional optimization approach shows weaknesses in evaluating the feasibility of using a recuperator, when the expander outlet temperature is high. In these cases the non-conventional optimization approach is the more suited methodology for designing organic Rankine cycles

    Second Overtone Pulsators Among Delta Scuti Stars

    Full text link
    We investigate the modal stability of stellar models at masses and luminosity levels corresponding to post main sequence luminous delta scuti pulsators. The envelope models have been computed at fixed mass value, luminosity level and chemical composition (Y=0.28, Z=0.02). According to a nonlinear approach to radial oscillations the present investigation predicts the occurrence of stable second overtone pulsators for the first time. The shape of both light and velocity curves are presented and discussed, providing a useful tool for the identification of second overtone pulsators among the known groups of radially pulsating stars. The period ratios of mixed mode pulsators obtained by perturbing the first and the second overtone radial eigenfunctions are in agreement with observative values. Finally, the physical structure and the dynamical properties of second overtone pulsators are discussed in detail. The role played by the nodal lines in the destabilization of second overtone pulsators is also pointed out.Comment: 20 pages, 11 Postscript figures, uses aaspp4.sty and tighten.st

    DFM synthesis approach based on product-process interface modelling. Application to the peen forming process.

    Get PDF
    Engineering design approach are curently CAD-centred design process. Manufacturing information is selected and assessed very late in the design process and above all as a reactive task instead of being proactive to lead the design choices. DFM appraoches are therefore assesment methods that compare several design alternatives and not real design approaches at all. Main added value of this research work concerns the use of a product-process interface model to jointly manage both the product and the manufacturing data in a proactive DFM way. The DFM synthesis approach and the interface model are presented via the description of the DFM software platform

    Identifying component modules

    Get PDF
    A computer-based system for modelling component dependencies and identifying component modules is presented. A variation of the Dependency Structure Matrix (DSM) representation was used to model component dependencies. The system utilises a two-stage approach towards facilitating the identification of a hierarchical modular structure. The first stage calculates a value for a clustering criterion that may be used to group component dependencies together. A Genetic Algorithm is described to optimise the order of the components within the DSM with the focus of minimising the value of the clustering criterion to identify the most significant component groupings (modules) within the product structure. The second stage utilises a 'Module Strength Indicator' (MSI) function to determine a value representative of the degree of modularity of the component groupings. The application of this function to the DSM produces a 'Module Structure Matrix' (MSM) depicting the relative modularity of available component groupings within it. The approach enabled the identification of hierarchical modularity in the product structure without the requirement for any additional domain specific knowledge within the system. The system supports design by providing mechanisms to explicitly represent and utilise component and dependency knowledge to facilitate the nontrivial task of determining near-optimal component modules and representing product modularity

    Serum heart-type fatty acid-binding protein and cerebrospinal fluid tau: Marker candidates for dementia with Lewy bodies

    Get PDF
    Background: The measurement of biomarkers in cerebrospinal fluid (CSF) has gained increasing acceptance in establishing the diagnosis of some neurodegenerative diseases. Heart-type fatty acid-binding protein (H-FABP) was recently discovered in CSF and serum of patients with neurodegenerative diseases. Objective: We investigated H-FABP in CSF and serum alone and in combination with CSF tau protein to evaluate these as potential biomarkers for the differentiation between dementia with Lewy bodies (DLB) and Alzheimer's disease (AD). Methods: We established H-FABP and tau protein values in a set of 144 persons with DLB (n = 33), Parkinson disease with dementia (PDD; n = 25), AD (n = 35) and nonclemented neurological controls (NNC; n = 51). Additionally, serum H-FABP levels were analyzed in idiopathic Parkinson disease patients without evidence of cognitive decline (n = 45) using commercially available enzyme-linked immunosorbent assays. We calculated absolute values of HFABP and tau protein in CSF and serum and established relative ratios between the two to obtain the best possible match for the clinical working diagnosis. Results: Serum HFABP levels were elevated in DLB and PDD patients compared with NNC and AD subjects. To better discriminate between DLB and AD, we calculated the ratio of serum H-FABP to CSF tau protein levels. At the arbitrary chosen cutoff ratio >= 8 this quotient reached a sensitivity of 91% and a specificity of 66%. Conclusion: Our results suggest that the measurement of CSF tau protein, together with H-FABP quantification in serum and CSF, and the ratio of serum H-FABP to CSF tau protein represent marker candidates for the differentiation between AD and DLB. Copyright (c) 2007 S. Karger AG, Basel

    DFM synthesis approach based on product-process interface modelling. Application to the peen forming process.

    Get PDF
    International audienceEngineering design approach are curently CAD-centred design process. Manufacturing information is selected and assessed very late in the design process and above all as a reactive task instead of being proactive to lead the design choices. DFM appraoches are therefore assesment methods that compare several design alternatives and not real design approaches at all. Main added value of this research work concerns the use of a product-process interface model to jointly manage both the product and the manufacturing data in a proactive DFM way. The DFM synthesis approach and the interface model are presented via the description of the DFM software platform

    Prognostic impact of urokinase-type plasminogen activator (uPA) and its inhibitor (PAI-1) in cytosols and pellet extracts derived from 892 breast cancer patients

    Get PDF
    To evaluate the clinical relevance of urokinase-type plasminogen activator (uPA) and its type-1 inhibitor (PAI-1) measured by a recently developed enzyme-linked immunosorbent assay (ELISA), we analysed both components in samples derived from 892 patients with primary breast cancer (median follow-up 99 months). The assays were performed in cytosolic extracts as well as in corresponding detergent extracts of pellets obtained after ultracentrifugation, which was carried out when preparing the cytosolic fractions for routine steroid hormone receptor determination. Statistically significant correlations were found between the cytosolic levels and those determined in the pellet extracts (Spearman correlation coefficient rs = 0.60, P < 0.0001 for uPA and rs = 0.65, P < 0.0001 for PAI-1). Furthermore, strong correlations were found between the levels of both uPA (rs = 0.85, P < 0.0001) and PAI-1 (rs = 0.90, P < 0.0001) in the cytosols and their levels previously measured with ELISAs based on commercial reagents. In both Cox univariate and multivariate analysis, high cytosolic levels of uPA or PAI-1 were significantly associated with increased rates of relapse and death. The levels of uPA and PAI-1 in the pellet extracts also provided prognostic information, although to a lesser extent compared with the cytosolic extracts. The prediction of prognosis on the basis of uPA and PAI-1 assessed by an alternative ELISA once again emphasizes the established prognostic role and usefulness of these parameters in selection of breast cancer patients at high or low risk of recurrence. © 1999 Cancer Research Campaig
    • …
    corecore