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Abstract. This paper presents a method for design of optimized poroelastic

materials which under internal pressurization turn into actuators for application

in e.g. linear motors. The actuators are modeled in a two scale fluid-structure

interaction approach. The fluid saturated material microstructure is optimized using

topology optimization in order to achieve a better macroscopic performance quantified

by vertical or torsional deflections. Constraints are introduced to ensure a certain

deflection / extension ratio of the actuator.

1. Introduction

Poroelasticity, mostly applied in the field of earth mechanics, may also be used in the

modeling and design of smart saturated porous actuators. This could for instance be a

pressure driven linear motor in which the actuators are composed of sealed saturated

poroelastic materials. Ordinary random microstructured poroelastic materials such

as foams usually swell equally in all directions when pressurized. By designing the

microstructure it is possible to make the structure deflect in a prescribed manner like

e.g. bending or twisting. This could for example be of use in linear motors. Usually

linear motors for use in e.g. atomic force microscopes use piezoelectric actuation cf.

Friend et al. (2004), however, in a non-electronics environment the use of poroelastic

actuators driven by a pressure change may be a viable alternative.

An illustration of the working principle of a linear motor is shown in figure 1.

The linear motor is based on a bi-morph actuator and works in a sequence of four

steps. At first the actuator is at rest. Then one of the subdomains is pressurized and

elongates which makes the actuator bend and grip the rod. The other subdomain starts

to elongate due to pressurization while the first retracts as it is depressurized. This

makes the actuator, and hence the actuation rod, move sideways. Finally, the second

subdomain is depressurized and the rod has been translated an amount corresponding

to the horizontal actuation distance of the actuator. The sequence is repeated and may

with two actuators result in a linear motion with constant velocity.
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Figure 1. Working principle of a linear motor based on a bi-morph actuator. Step 1:

Actuator is unloaded. Step 2: The right material elongates and grips the rod. Step 3:

The left material elongates increasingly while the right material retracts which makes

the rod move. Step 4: The left material is now elongated alone.

In Andreasen & Sigmund (2011) the microstructure of saturated poroelastic

materials was optimized with respect to the pressure coupling. The obtained material

designs made an actuator deflect when pressurized but no direct aims were taken towards

maximizing the macroscopic deflection. However, to directly maximize the macroscopic

deflection a multiscale approach should be applied as the deflection does not depend on

the pressure coupling alone. The stiffness of the structure and the material layup will

have a large influence on the performance of the poroelastic actuator as well. This paper

therefore presents the theory and application for multiscale modeling of poroelastic

actuators along with the optimization of periodic poroelastic materials.

A simple sketch of the problem is shown in figure 2. The actuator consists of two

aligned and individually sealed slabs of porous materials which are assembled with a

stiff half cylinder of elastic material at the right face and fixed at the left. Alternating

the pressure applied to the individual slabs makes it possible to control the actuator in

the way indicated in figure 2. The stiff half cylinder is included in order to facilitate

a good interaction between actuator and axle and in order to hinder the optimizer in

taking advantage of local effects near the end of the actuator. Even a simple bimorph

actuator composed of two slabs with isotropic porous materials will perform the task

specified above. However, the performance can be significantly improved by altering the

material microstructure.

Multi-scale modeling is a common technique within the field of computational

mechanics. By assuming that a representative volume element (RVE) can be defined,

small material scale details can be included in the computation which would otherwise

be impossible to resolve.

Multi-scale methods can be applied to both elastic and inelastic problems. This

work takes basis in the asymptotic expansion of the fluid-structure interaction problem

(Auriault & Sanchez-Palencia 1977, Sanchez-Palencia 1980, Auriault et al. 2009).

Aspects of the numerical implementation of the homogenization for porous elastic

and internally pressurized composites were described in Guedes & Kikuchi (1990).
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Figure 2. Actuator problem; two individually sealed porous slabs (light gray)

assembled with a half cylinder of a stiffer elastic material (dark). Initial and deformed

geometry shown. Line springs are attached to the nose line of the actuator.

Terada et al. (1998) give insight in both the asymptotic expansion of the solid-

fluid mixture problem as well as the implementation. Both a biphasic macroscopic

model (poroelasticity, Biot type (Biot 1941)), as used in this work, and a monophasic

viscoelastic model is treated therein.

Multi-scale topology optimization is an evolving area in which not only a material

distribution problem is optimized but also the material microstructure itself. In fact,

this idea was the underlying concept of the seminal paper on topology optimization

(Bendsøe & Kikuchi 1988) where the homogenization approach to topology optimization

is presented. By varying the size of the members in a fixed topology microstructure,

interpolation functions were obtained for use in the macroscopic distribution problem.

This is in contrast to a majority of later applications of topology optimization

which rely on the density method, where an interpolation scheme (Bendsøe 1989) is

imposed to avoid microstructural considerations during optimization. The underlying

microstructure can however be interpreted physically c.f. Bendsøe & Sigmund (1999).

Elaborating further on the homogenization approach to topology optimization a

natural extension is the hierarchical optimization of heterogeneous porous materials

meaning a simultaneous optimization of material distribution and material design.

Rodrigues et al. (2002) introduced a framework in which the multiple scale designs can

be handled. One macroscale and multiple microscale problems are solved iteratively.

The methodology was applied to bone remodeling in Coelho et al. (2008) and Coelho

et al. (2009). A slightly different approach using interpolation schemes at both the macro

and the micro scale were introduced in Liu et al. (2008) for compliance optimization

and Nui et al. (2008) for frequency optimization. A two scale method for optimizing

the structural compliance by material design and subjected to a seepage constraint was

presented by Xu & Cheng (2010) and Le et al. (2012) presented a method for optimizing

material microstructure for macroscopic energy management.

Free material optimization (FMO) introduced in Bendsøe et al. (1994) is yet

another approach to multiscale optimization as it is distribution of material parameters
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2 MECHANICAL MODEL AND OPTIMIZATION PROBLEM

rather than densities allowing for anisotropic materials. However the method itself

does not consider the material designs or composite layups that are needed top realize

the optimized local material properties. This inverse homogenization of the stiffness

properties was the scope of Sigmund (1994) and Sigmund (1995) and the approach has

been further automatized by Schury et al. (2011).

In fluid mechanics, topology optimization was applied to Stokes flow problems

in Borrvall & Petersson (2003) and extended to Navier-Stokes flow in Gersborg-

Hansen et al. (2005) and Olesen et al. (2006) using a Brinkman term which introduce

an infinitely stiff solid material. The application of topology optimization to fluid

structure interaction problems has only recently been approached. Yoon (2010)

presented a method for converting the interface stresses to a volume integral which

is suited for a monolithic formulation. Kreissl et al. (2010) presented a one way

coupling used for the design of flexible micro-fluidic devices. Within optimization of

saturated elastic materials the interstitial fluid flow has been considered by imposing

conductivity constraints (Sigmund et al. 1998) and by optimizing for the weighted sum

of bulk modulus and permeability (Guest & Prévost 2006). This kind of constraints

and considerations applies e.g. for the design of scaffolds for tissue engineering

(Hollister 2005).

The fluid-structure interaction is in the present method handled by the

homogenization of the Stokes flow in the microstructure which results in a pressure

coupling at the macro scale. Contrary to the optimization procedure in Rodrigues

et al. (2002) in which both material distribution and design is optimized the multiscale

approach taken in this paper deals alone with the material optimization in two predefined

subdomains using a macroscopic objective function.

The paper is organized as follows: First an introduction to the model and

optimization method is given in section 2. The theory on the two scale expansion

of the fluid-structure interaction problem is explained in section 3 presenting the

state equations. In section 4 the optimization problem is introduced along with the

interpolation functions needed for applying topology optimization to the microstructure

design. Section 5 presents the numerical implementation and the results are presented

in section 6. Finally the findings are concluded in section 7.

2. Mechanical model and optimization problem

The approach taken in this paper towards the optimization of a bi-morph pressure driven

actuator restricts itself to the design of two porous materials used in the two slabs as

illustrated in figure 2.

To simplify the optimization and modeling procedure we consider only two static

load cases which by superposition can approximate the actuator motion. This is possible

as we assume the internal flow resistance is low such that the time scale for flow is much

smaller than for the actuator motion. This assumption restricts the unit-cell size since

very small cells in general have a low permeability and hence a large time scale. Thus
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Figure 3. Schematic showing a 2D schematic of the multiscale problem. The macro

problem, the actuator, shown left. The periodic porous material in the center and the

unit-cell (RVE) to the right. Solid and fluid domains indicated by black and white,

interfacing boundaries by Γ and periodic boundaries by Γp. n denotes the unit normal

vector to the interface

the actuator concept is less applicable for materials with very small cells.

With the assumption above we can neglect inertia and convection in the fluid

phase. Furthermore the pressure will be prescribed in the domains mimicking a steady

state solution. Hence, all description of fluid motion can be neglected and only the

formulation regarding the solid deformation and pressure induced loading needs to be

considered. The theory relies on open-walled structures but no specific measures are

taken in order to ensure open cells as all our optimized designs turn out to be open-

walled. However, if needed open-walled cells can be ensured by adding permeability

constraints as implemented in Andreasen & Sigmund (2011).

The objective for the optimization study is to maximize the macroscopic deflection

of the actuator subject to the two applied pressure load cases. To include the trade-off

between stroke and force we apply a set of springs at the end of the actuator which is

also shown in figure 2. The spring stiffness usually influence the stiffness of the obtained

design (Sigmund 1997).

The actuator is optimized by altering the microstructure of the two porous material

structures by applying topology optimization. In order to do so, the microstructure

equations are cast in a monolithic form such that a density is associated to each finite

element in the microstructure model representing either solid or fluid. However, as

discrete optimization problems are difficult to solve, the problem is relaxed by the

introduction of the standard continuous density interpolation approach and solved by a

gradient based optimization method.

3. Theory

The physical setting is the solid-fluid interaction at the microscale of a saturated periodic

porous elastic material. A simplified illustration is shown in figure 3 and the interaction

problem can be described as follows.

In the solid elastic material the stress is given by the Cauchy stress tensor

5
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σs = E : ε(u) where ε(u) is the infinitesimal strain tensor, u is the displacement

vector and E is the elastic stiffness tensor. The fluid is assumed to be Newtonian and

incompressible and the stress is given by σf = 2µD(v)−pI where D(v) = vij−δijvkk/3 is

the strain rate tensor, p the pressure, I the 2nd order identity tensor and v the velocity.

Omitting inertial effects, convection and body forces yield the following conservation

equations

∇ · σs = 0 in Ωs (1)

∇ · σf = 0 in Ωf (2)

∇ · v = 0 in Ωf (3)

The boundary conditions between the solid and the fluid requires continuity in the

stress over the boundary and the fluid obeys a no-slip condition along the interfacing

boundaries. Furthermore, periodicity of displacements, velocities and pressure is

required, yielding

(σs − σf ) · n = 0 at Γ (4)

v− u̇ = 0 at Γ (5)

u,v, p periodic at Γp (6)

where n is the normal vector to the boundary Γ.

By applying a two scale asymptotic expansion and assuming that the scales are

separable this results in a mixed stiffness formulation cf. Wang (2000) which is derived

thoroughly in e.g. Auriault et al. (2009). Finally this leaves us with two sets of equations

that can be solved in sequence, one describing the microscopic behavior and another

describing the macroscopic. As mentioned previously only the steady state solution with

a predefined pressure distribution (uniform) will be considered and therefore the macro

equation yields

Find u ∈ V
3 for all û ∈ V

3
0 such that

∫

V

εij(û)E
H
ijlmεlm(u) dV −

∫

L

ûiuiks dL =

∫

V

αijεij(û)p dV (7)

where u is displacement, p is pressure and ks is the spring stiffness of the attached

springs. These are attached to the nose line L (line perpendicular to 1-3 plane) cf.

figure 2. EH
ijlm and αij are the homogenized stiffness and pressure coupling tensors

obtained from the micro model analysis, respectively. The pressure term is located

at the right hand side as the pressure distribution is assumed to be known (spatially

constant) a priori in the simulations.

3.1. Micromodel

The homogenized coefficients that are needed in the poroelastic model are computed

by use of homogenization. The deformations of a representative unit cell from the
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3.2 Finite element method (FEM) 3 THEORY

periodic microstructure can be obtained using seven different load cases. Afterwards

the homogenized coefficients can be computed based on volume averages over the

obtained deformations. There are six load cases (three normal and three shear modes)

associated with the homogenization of the stiffness tensor EH
ijlm and one load case

(internal pressure) for the homogenization of the pressure coupling tensor αij.

However, if the basis material is a homogeneous microscopically isotropic elastic

material the pressure coupling can be computed directly based on the homogenized

stiffness tensor by following e.g. Mei & Vernescu (2010) and the seventh load case can

be neglected.

The analyzed unit cell has periodic boundary conditions and the homogenized

stiffness tensor can be computed by solving the following problem

Find ξkh ∈ V
3 for all û ∈ V

3
0 such that

∫

Ω

εij(û)Eijlm(ρ)εlm(ξ
kh) dV =

∫

Ω

Eijlm(ρ)ε
0,kh
lm εij(û) dV (8)

EH
ijkh =

1

|Ω|

∫

Ω

(
ε0,ijlm − εlm(ξ

ij)
)
Elmpq(ρ)

(
ε0,khpq − εpq(ξ

kh)
)
dΩ (9)

where ε0,kh is a second order tensor with only a single entry ε0,khkh = 1. The stiffness

tensor depends on the design denoted by ρ which will be discussed later. In equation

(9) the mutual energies are used to compute the homogenized stiffness tensor.

The pressure coupling tensor can as described also be obtained by homogenization

cf. Auriault et al. (2009), however here we utilize the explicit relation between the

pressure coupling and homogenized stiffness tensor as described in Mei & Vernescu

(2010) which yields

αij = δij −
EH

pqijδpg

3λ+ 2G
(10)

where λ = Eν/[(1 + ν)(1 − 2ν)] and G = E/[2(1 + ν)] are the Lamé coefficients. For

macroscopically isotropic materials the fraction reduces to the ratio between the bulk

modulus of the composite and the basis material. This means that the pressure coupling

approaches unity if an incompressible basis material is used.

3.2. Finite element method (FEM)

The partial differential equations can be solved using the finite element method and for

the macroscale equation (7) this yields the following equation system

Ku = Qp

where K is the stiffness matrix and Q is the pressure coupling matrix defined as

K =

∫

V

BTEHB dV +

∫

L

ksN
TN dL, Q =

∫

V

BTαNp dV

7



4 OPTIMIZATION

where N and Np are the shape functions for displacements and pressure, respectively.

B is the strain displacement matrix, EH is the matrix form of the homogenized

stiffness tensor and α is the vector form of the pressure coupling tensor. The stiffness

matrix contains contributions from both the elements and the spring stiffnesses. The

displacements can easily be found by solving this equation system as the pressure field

is assumed to be uniform and given a priori.

For the micro scale problems the discretization yields the equation systems

K̆ξi = f̆ i

for i = 1, 6 where ξ is periodic. The stiffness matrix and load vectors are given by

K̆ =

∫

Ω

BTE(ρ)B dΩ, f̆ i =

∫

Ω

BTE(ρ)bi dΩ

where E(ρ) is the spatially varying stiffness matrix of the base material and bi

corresponds to the i’th column of the 6 × 6 identity matrix. This formulation is the

FE-discretization of (8).

4. Optimization

The goal for the optimization of the poroelastic actuator is to maximize its vertical

deflection such that the performance of a poroelastic linear motor can be improved.

This is done by imposing topology optimization in the material design process in which

the strict distinction between solid and void is relaxed by the introduction of a design

interpolation function. At design convergence the densities are supposed to be either 0

or 1 due to the imposed penalization of intermediate densities.

Considering the actuator displayed in figure 2 having a movement as illustrated

in figure 4 the performance is quantified by the average vertical deflection ū3 which

is the vertical deflection integrated along the nose line. Assuming a linear response

to the pressurization of either domain, the optimization is based on the two solutions

corresponding to pressurization of each domain. These two load cases are referred to by

a superscript parenthesized number.

In order to apply topology optimization to the unit cell design, each element in

the FE-discretization is given a density ρe ∈ [0; 1] such that it can represent values

between pure fluid (ρe = 0) and solid (ρe = 1). During the optimization intermediate

densities are allowed and the stiffness is interpolated using the RAMP scheme (Stolpe

& Svanberg 2001)

ζ(ρe) =

(
10−4 +

ρe(1− 10−4)

1 + p(1− ρe)

)
(11)

where p is a penalization factor, here p = 3. For the stiffness this yields E(ρ) = ζ(ρ)E0

where E0 is the stiffness tensor of the isotropic basis material. This scheme imposes

a lower bound on the stiffness which avoids the equation system being singular and

8
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Figure 4. Left: Sketch of actuator motion path. Right: Pressure-time relation for

the domains. First the upper domain(1) is loaded by a pressure, which then decays

linearly while the lower domain(2) is loaded by a linearly increasing pressure. Finally

this pressure is also decreased and the actuator returns to its initial state.

furthermore ensures a non-zero gradient for ρe = 0. This design dependence of the

stiffness applies to the micro problem (8) and the volume averaging (9).

The optimization problem can be formulated as a min-max optimization problem:

min
ρ∈RN

max
{
ū
(1)
3 ,−ū

(2)
3

}

s.t. Macro equation

Micro equations
N1∑

e=1

veρe − γ1V0 ≤ 0,

N2∑

e=N1+1

veρe − γ2V0 ≤ 0,

gi ≤ 0

0 ≤ ρe ≤ 1, for e = 1, ..., N





(12)

where ū3 denotes the average deflection in the 3rd direction i.e. the vertical deflection

integrated along the nose line. N = N1 + N2 is the number of elements (total and

in each material), γ is the allowed solid volume fraction for each material, ve is the

element volume, V0 is the total volume of the unit-cell and gi = gi(ρ,u) denotes a set

of inequality constraints which will be introduced later.

4.1. Sensitivity analysis

The stiffness matrixK of the macro problem depends on the homogenized stiffness tensor

that again depends on the design variables. This also holds for the pressure coupling

matrix Q that depends on the homogenized pressure coupling tensor. Therefore the

sensitivity of the objective function must be computed by the chain rule as

dΦ

dρe
=

∂Φ

∂EH

dEH

dρe
+

∂Φ

∂α

dα

dρe
, for e = 1, . . . , N (13)

9



4.2 Micro model sensitivities 4 OPTIMIZATION

In order to compute the first factor of both terms an adjoint sensitivity analysis

(Michaleris et al. 1994) of the macroscopic equations can be performed. First, the

Lagrangian L is defined by the objective function, the adjoint variable and the residual

as

L = Φ + λT (−Ku+Qp) (14)

The sensitivities with respect to the stiffness are computed by differentiating the

Lagrangian with the stiffness matrix

dL

dEH
=

∂Φ

∂EH
+ λT ∂(−Ku +Qp)

∂EH

+

(
∂Φ

∂u
+ λT ∂(−Ku +Qp)

∂u

)

︸ ︷︷ ︸
X

du

dEH
(15)

To eliminate the X-marked terms we choose λ as the solution to the adjoint problem

KTλ =
∂Φ

∂u
(16)

Having solved this problem for λ, the sensitivities are obtained from the remaining

terms of (15)

dL

dEH
=

∂Φ

∂EH
− λT ∂K

∂EH
u (17)

Analogously, the sensitivity with respect to the pressure coupling tensor can be obtained

as

dL

dα
=

∂Φ

∂α
+ λT ∂Q

∂α
p (18)

using the same adjoint solution as above.

4.2. Micro model sensitivities

The derivation of the micromodel sensitivities, i.e. the sensitivity of the components in

the homogenized stiffness tensor, is described in Sigmund & Torquato (1997) and they

yield
dEH

ijkh

dρe
=

1

|Ω|

∫

Ωe

(
ε0,ijlm − εlm

(
ξij

))
E ′

lmpq(ρe)
(
ε0,khpq − εpq

(
ξkh

))
dΩ (19)

where ()′ denotes the partial derivative with respect to the design variable. The

sensitivities of α can be computed, by differentiating (10), as

dαkh

dρe
= −

dEH
ijkh

dρe

δij
3λ+ 2G

(20)

10



5 NUMERICAL IMPLEMENTATION

Figure 5. The meshes used in the analysis: a) Macro mesh, 810 hexahedral elements.

b) Micro mesh with 303 brick elements.

5. Numerical implementation

An optimization software has been written in the framework of Comsol Multiphysics

3.5a and Matlab 2008b. The macroscopic modeling of the actuator is done using the

FEM functionality within Comsol using 2nd order hexahedral elements. The mesh used

for the macroscopic model is shown in figure 5(a). The solution is obtained using the

built-in geometric multi grid (GMG) preconditioned conjugate gradient (PCG) method.

The homogenization procedure has been written solely in Matlab using 1st order

regular hexahedral elements in order to get the highest possible resolution. The mesh is

shown in figure 5(b). All faces have periodic boundary conditions and they are enforced

using the same node numbers on the opposing sides of the unit-cell. In order to prevent

rigid body motion a single node has been fully constrained. The solution is obtained

using an incomplete Choleskey PCG method.

The optimization problem is solved using the method of moving asymptotes (MMA)

by Svanberg (1987) and the convergence criteria used is ‖ρi−ρi−1‖∞ < 0.001. The non-

smooth min-max problem formulation is converted into a smooth problem by using a

bound formulation.

Furthermore a standard density filter (Bruns & Tortorelli 2001, Bourdin 2001) has

been used in order to avoid checkerboard patterns. To try to avoid convergence to local

minima we use a continuation strategy for the filter radius R such that its final value is

1.4 times the element side length and the filter uses a linear weighting.

The optimization procedure can be summarized as follows

11



6 RESULTS

(i) Initialize

(ii) While ‖ρi − ρi−1‖∞ < 0.001 and Rmin ≤ R

(a) Solve micro problems, compute EH ,α, dEH

dρ
, dα
dρ
,

Eq. (8),(9),(10),(19),(20)

(b) Solve macro problem, compute Φ, Eq. (7)

(c) Solve adjoint macro problem, compute ∂Φ
∂EH ,

∂Φ
∂α

,

Eq. (16),(17),(18)

(d) Find sensitivities using chain rule, dΦ
dρ

= ∂Φ
∂EH

dEH

dρ
+ ∂Φ

∂α
dα
dρ
, Eq. (13)

(e) Update ρ using MMA

(f) Decrease R if ‖ρi − ρi−1‖∞ < 0.001

(iii) Post process

6. Results

The numerical studies comprise four test cases: 1) a comparison with the method from

Andreasen & Sigmund (2011) for a single material actuator; 2) a two material design;

3) a two material design with constraints on the extension/deflection ratio, and 4) a

torsional actuator. All optimization problems are subject to a 30% volume constraint

(γ = 0.3). The volume constraints turns out to be active in all examples except if stated

otherwise. The elastic basis material has the properties E = 1 and ν = 0.3.

6.1. One material design

In the paper by Andreasen & Sigmund (2011) a method for indirect optimization of a

single material actuator was presented. This was done under the assumption that the

lateral deflection could be maximized by increasing the magnitude of the corresponding

entry in the pressure coupling tensor, e.g. increasing deflection in the 3rd direction

by maximizing the magnitude of α13. Using the same code and formulation as in

the reference, a material is generated for which α13 is minimized (i.e. maximized in

downward direction). The result is shown in figure 6(a).

The material unit cell plotted in figure 6(b) is obtained using the macro problem

as it is presented in figure 2 with springs attached to the nose line having the stiffness

ks = 10−3. The optimized material design does not completely resemble that of the

minimized α13 entry. The fact that the material is also extending due to the internal

pressure makes it impossible to rely on the shear effects alone. The inclined planes are

still present but a very thick layer of material ensures stiffness in the 1-direction such

that the pressure is not wasted on deforming the extension spring, when it is the vertical

deflection that matters.

By detaching the springs from the right edge the design changes and this is shown

in figure 6(c). Not having any springs means that no force must be transmitted and

thereby no or only small stiffness is required. It is clearly seen from the material design

that not all material is utilized which of course also is evident when evaluating the

12
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(a) (b) (c)

Figure 6. (a) Material with minimized α13 component. (b) Resulting material from

maximizing the vertical displacement of a single material actuator with springs with

stiffness ks = 10−3 attached. (c) As (b) but with no springs attached.

Figure α13 ū3, (ks = 10−3) ū3, (ks = 0)

6(a) −0.0602 −10.36 −77.56

6(b) −0.0027 −646.24 −6858.45

6(c) −0.0002 −10.42 −16166.65

Table 1. Cross check for optimized single material actuators shown in figure 6. The

post evaluation was subjected to a pressure of p = 1. The minimum value for each

column is emphasized.

stiffness and pressure coupling. A comparison of the performance of the three designs

is listed in table 1. It is seen that they individually perform best for the problem

formulation for which they were optimized. The rather poor macroscopic performance

of the pressure-coupling-optimized material having parallel planes was discussed in

Andreasen & Sigmund (2011) and for the final designs stiffness constraints were added

in order to ensure stable and load transmitting materials.

6.2. Two material design

This section considers the design of a bi-morph poroelastic actuator. The objective is

to make the actuator move as illustrated in figure 4, namely extension and downwards

deflection followed by an upwards deflection. The figure also presents a pressure-time

relation which indicates the sequence in which the domains are pressurized. First the

upper domain is pressurized. This is followed by a linear pressure decrease in the upper

domain and an increase in lower domain until the lower domain is fully pressurized.

Removing the pressure the actuator moves back to its initial configuration.
As described in section 4 the optimization will only consider two quasi static load

cases. One for the pressurization of each domain. Figure 7 shows the designs obtained
using the formulation in equation (12). The initial design was a solid cross and the
final result has been obtained using a continuation approach on the filter radius (R={2,
1.4} elements side length). From 7(a) and 7(c) it is seen that the material unit cell

13
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has a main beam in the 1st direction (along the actuator) while the connections in the
2nd and 3rd direction are rather thin. This results in a low transversal stiffness of the
material. The resulting stiffness and pressure coupling matrices of the two materials
are:

EH
1 =




25.527 0.153 0.175 −0.000 0.262 0.000

0.128 0.102 0.000 0.150 −0.000

0.148 −0.000 0.182 0.000

0.055 0.000 0.061

0.296 0.000

sym 0.097




· 10−2, (21)

α1 =



0.897 −0.000 −0.002

0.998 −0.000

sym 0.998


 (22)

EH
2 =




25.527 0.153 0.175 −0.000 −0.262 −0.000

0.128 0.102 −0.000 −0.150 −0.000

0.148 0.000 −0.182 −0.000

0.055 0.000 −0.061

0.296 0.000

sym 0.097




· 10−2, (23)

α2 =



0.897 −0.000 0.002

0.998 −0.000

sym 0.998


 (24)

from which it is seen that the material properties are symmetric around the (x1, x2)-

plane. No explicit symmetry constraint is enforced but starting with a symmetric

initial design and optimizing using a symmetric objective function does not leave any

motivation to the optimizer to make two different designs.
Figure 7(b) and 7(d) illustrate the deformed actuator. The in- and out-of-plane

deformations are small as they do not directly enter the objective. It is seen that the
deflection is dominating the deformation. The upper and lower boundaries are nearly
straight which indicates that the shear strain is important. This is linked to the low
transversal stiffness of the materials together with the pressure coupling which allows
the actuator to deflect. In order to explore the nature of the deformation the stress state
can be analyzed. The total stress σ = EHε(u) − αp in point xlow = (1.5,−0.5, 0.25)
and xup = (1.5,−0.5, 0.75) while pressurizing the lower domain is

σxlow
=





−1.548

1.001

0.987

−0.001

−2.283

0.001





· 10−3 −





0.897

0.998

0.998

−0.000

0.002

−0.000





· 10−3 =





−2.444

0.003

−0.011

−0.001

−2.286

0.001





· 10−3, σxup =





2.714

0.097

0.016

−0.000

0.455

−0.000





· 10−3

(25)

and it is seen that σ1 and σ5 in the lower domain have the same magnitude. As seen

in figure 8 the actuator only moves vertically while pressurized.
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6.2 Two material design 6 RESULTS

(a) Material 1 (b) Deformation load case 1. Color: u3

(c) Material 2 (d) Deformation load case 2. Color: u3

Figure 7. Optimized material configuration and deflections for each of the two load

cases. Optimized with spring stiffness k = 10−3. Same deformation scaling apply to

both plots. Φfinal = max{−ū
(1)
3 , ū

(2)
3 } = 0.424, p = 10−3

Figure 8. Left: Deformed actuator with pressurized upper domain. Right: Motion

path with indication of current state. Deformations are exaggerated.
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6.2.1. Localization Having computed the macroscopic response the corresponding

deformation of the unit cell can be investigated. In general (Auriault et al. 2009) the

micro deformation is given by

u
(1)
i = ξlmi εlm(u

(0))− ηip
(0) + ū

(1)
i (x) (26)

where the first two terms are linear combinations of the homogenization equation

solutions and the macroscopic strain and pressure, respectively. The final term is a

rigid body movement of the unit-cell. However as the macro and micro structures have

a finite scale ratio a uniform straining of the unit cell also needs to be superposed to the

local deformations. This uniform straining corresponds to the macroscopic strain field

applied to the unit cell

udef
i (y,x) = εij(u

(0))yj (27)

where y the non-dimensional local coordinate. This deformation field is superposed on

that of equation (26). The unit cell deformations corresponding to the design and loads

shown in figure 7 are shown in figure 9.

Figure 9. Deformed unit cells for the two materials (top and bottom) and for each

load case (left/right). Color shows the deformation vector sum (
√
u2
1 + u2

2 + u2
3).

The unit cell has a side length of 0.01 and the deformations are scaled by a factor

0.5. The unit-cells are located in the same points as used for the stress evaluation;

xlow = (1.5,−0.5, 0.25) and xup = (1.5,−0.5, 0.75)
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6.3 Deflection/extension constraints 6 RESULTS

6.3. Deflection/extension constraints

The previous actuator shown in figure 7 performs very well with respect to vertical

deflection for which the design was optimized. However in order to use the actuator in a

linear motor an extension is required. This can be ensured by adding a set of constraints

that restrict the ratio of the extension and the deflection to be approximately one. The

constraints are given by

g1 = (−u
(1)
3 /u

(1)
1 − 1)2 − ǫ ≤ 0 (28)

g2 = (u
(2)
3 /u

(2)
1 − 1)2 − ǫ ≤ 0 (29)

where ǫ is a small number (here ǫ = 0.01).

Taking these constraints into consideration the material design changes and the

resulting material structures are shown in figure 10. Again (a) and (c) show the

material microstructures and (b) and (d) the deformations. It is clearly seen that

the actuator now also extends. In comparison to the deformations of the previous

actuator it seems to bend more than it shears. From figure 10(a) and (c) it is seen that

the solid connection along the 1st axis is it getting very thin, approximately 1/15 of

the cell side length, which decrease the directional stiffness drastically. Also, figure 12

indicates that the centerpart of the microstructure rotates in a mechanism-like fashion,

in turn resulting in the controlled macroscopic deflection pattern. Both these effects

are reflected in the reduced stiffness of this microstructure compared to the one without

deflection/extension constraints.
The material parameters yield:

EH
1 =




2.811 −0.186 −0.266 0.000 −0.280 0.000

0.113 0.049 −0.000 0.041 −0.000

0.088 −0.000 0.056 −0.000

0.071 −0.000 0.051

0.064 −0.000

sym 0.063




· 10−2 (30)

α1 =



0.991 −0.000 0.001

1.000 −0.000

sym 1.001


 (31)

EH
2 =




2.811 −0.186 −0.266 −0.000 0.280 0.000

0.113 0.049 0.000 −0.041 −0.000

0.088 0.000 −0.056 −0.000

0.071 −0.000 −0.051

0.064 0.000

sym 0.063




· 10−2 (32)

α2 =



0.991 −0.000 −0.001

1.000 0.000

sym 1.001


 (33)
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6.3 Deflection/extension constraints 6 RESULTS

(a) Material 1 (b) Deformation load case 1. Color: u3

(c) Material 2 (d) Deformation load case 2. Color: u3

Figure 10. Optimized material configuration and deflections for each of the two load

cases. A set of constraints ensure that the extension-deflection ratio is approximately

one. Optimized with spring stiffness k = 10−3. Same deformation scaling apply to

both plots. Φfinal = max{−ū
(1)
3 , ū

(2)
3 } = 0.226, p = 10−3

This is also revealed if the stress state is investigated:

σxlow
=





−1.534

0.978

0.969

0.001

−0.920

−0.000





· 10−3 −





0.991

1.000

1.001

0.000

−0.001

−0.000





· 10−3 =





−2.524

−0.022

−0.032

0.001

−0.919

−0.000





· 10−3, σxup =





1.468

0.071

0.018

0.001

−0.102

0.001





· 10−3

(34)

If the pressure is varied linearly as shown in figure 4 the actuator deflects as shown

in figure 11. The actuator is shown in a state where the upper domain is pressurized
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6.4 Torsion actuator 6 RESULTS

Figure 11. Left: Deformed actuator with pressurized upper domain. Right: Motion

path with indication of current state. Deformations are exaggerated.

Figure 12. Deformed unit cells for the two materials (top and bottom) and for

each load case (left/right). Color shows the deformation vector sum
√
u2
1 + u2

2 + u2
3.

Deformations are scaled by a factor 0.25. The unit-cells are located in the same points

as the stresses are evaluated; xlow = (1.5,−0.5, 0.25) and xup = (1.5,−0.5, 0.75)

and the computed motion path is shown in the right figure.

19



6.4 Torsion actuator 6 RESULTS

Figure 13. Smoothed and repeated unit cells for the optimized material 1 shown in

figure 7 and 10

(a) Material 1 (b) Material 2

Figure 14. Optimized materials for the torsional actuator. Optimized using spring

stiffness k = 103, and p = 1 Φfinal = −2.527 · 10−4

6.4. Torsion actuator

By changing the objective function slightly a torsion actuator can be generated i.e. one

that rotates around its longitudinal axis. The modified objective function is

Φ = max

{∫

L

u
(1)
3 (x2 + 0.5) dL, −

∫

L

u
(2)
3 (x2 + 0.5) dL

}
(35)
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6.4 Torsion actuator 6 RESULTS

(a) Upper (b) Lower

Figure 15. Deformed unit cells for the two materials for load case 2 only. Color shows

the deformation vector sum
√
u2
1 + u2

2 + u2
3. Deformations are scaled by a factor 0.25.

The unit-cells are located in the same points as previously; xlow = (1.5,−0.5, 0.25)

and xup = (1.5,−0.5, 0.75)

Figure 16. Left: Deformed actuator with pressurized lower domain. Right: Motion

path of nose line nodes with indication of current state in (x2, x3)-plane. Deformations

are exaggerated.

where x2 is the coordinate along the nose-line. In this way one side of the actuator

preferably moves upwards while the other moves downwards creating a rotational

motion. The optimized microstructures are shown in figure 14 and it is seen that they

contain inclined planes with an interconnection and a hole. Similar structures were

obtained and treated in Andreasen & Sigmund (2011) but contrary to this case they

were constrained to impose a minimum stiffness and permeability. The objective for the

two problems differ, however the mechanism that leads to the rotation seems to be the

same, namely an extension of the microstructure along the diagonal which is normal

to the inclined planes. This is seen from the deformed microstructures of load case 2

shown in figure 15. The microscopic deformation is shown in figure 16 along with the

deformation-path ((x2, x3)-plane) of the two nodes defining the nose-line. It is evident

that the actuator rotates, however for larger rotations another objective function should

21



7 CONCLUSION

be considered along with geometric non-linearities.

7. Conclusion

This paper presents an approach to material design for use in poroelastic actuators

based on multiscale modeling and topology optimization.

The optimization of a single material multiscale modeled actuator was compared

with the results obtained for optimizing the pressure coupling coefficient of the

microstructure alone. A bi-morph poroelastic actuator was optimized subject to a

volume constraint and a set of additional constraints was imposed in order to ensure

both extension and deflection of the actuator. Furthermore a torsion actuator was

optimized which yielded a material with inclined and interconnected planes similar to

those obtained in Andreasen & Sigmund (2011).

A future extension includes the possibility of making hierarchical optimization in

which either each macroscopic element or region of elements have individual material

configurations in the fashion of Rodrigues et al. (2002). By employing the poroelastic

model in a bone remodeling process it would be possible to study the direct impact of

internal fluid flow on the design of the scaffolds as opposed to the indirect approach by

Coelho et al. (2009). This work may also be extended to dynamic problems using the

full Biot equations (Biot 1956).
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