732 research outputs found

    Low Ply Drawings of Trees

    Full text link
    We consider the recently introduced model of \emph{low ply graph drawing}, in which the ply-disks of the vertices do not have many common overlaps, which results in a good distribution of the vertices in the plane. The \emph{ply-disk} of a vertex in a straight-line drawing is the disk centered at it whose radius is half the length of its longest incident edge. The largest number of ply-disks having a common overlap is called the \emph{ply-number} of the drawing. We focus on trees. We first consider drawings of trees with constant ply-number, proving that they may require exponential area, even for stars, and that they may not even exist for bounded-degree trees. Then, we turn our attention to drawings with logarithmic ply-number and show that trees with maximum degree 66 always admit such drawings in polynomial area.Comment: This is a complete access version of a paper that will appear in the proceedings of GD201

    Straight-line Drawability of a Planar Graph Plus an Edge

    Full text link
    We investigate straight-line drawings of topological graphs that consist of a planar graph plus one edge, also called almost-planar graphs. We present a characterization of such graphs that admit a straight-line drawing. The characterization enables a linear-time testing algorithm to determine whether an almost-planar graph admits a straight-line drawing, and a linear-time drawing algorithm that constructs such a drawing, if it exists. We also show that some almost-planar graphs require exponential area for a straight-line drawing

    Nuclear magnetic resonance in some solid hydrocarbons

    Get PDF
    The phenomenon of nuclear magnetic resonance is closely related to the molecular beam experiments and to microwave spectroscopy. Its significant feature is that the magnetic resonance principle, first applied to the molecular beam technique, has been extended to solids, liquids and gases in their normal physical states. In addition to providing yet another important method of measuring nuclear magnetic properties, this newer technique gives a means of investigating the establishment of the thermal equilibrium which is essential to the methods of obtaining very low temperatures; further, the resonance absorption spectrum yields information of crystal structures, phase transitions in solids and information about hindered rotation of molecules in solids. Thus the phenomenon can be used to study certain problems of the solid state. This thesis gives an account of such an application

    On the Recognition of Fan-Planar and Maximal Outer-Fan-Planar Graphs

    Full text link
    Fan-planar graphs were recently introduced as a generalization of 1-planar graphs. A graph is fan-planar if it can be embedded in the plane, such that each edge that is crossed more than once, is crossed by a bundle of two or more edges incident to a common vertex. A graph is outer-fan-planar if it has a fan-planar embedding in which every vertex is on the outer face. If, in addition, the insertion of an edge destroys its outer-fan-planarity, then it is maximal outer-fan-planar. In this paper, we present a polynomial-time algorithm to test whether a given graph is maximal outer-fan-planar. The algorithm can also be employed to produce an outer-fan-planar embedding, if one exists. On the negative side, we show that testing fan-planarity of a graph is NP-hard, for the case where the rotation system (i.e., the cyclic order of the edges around each vertex) is given

    Re-embedding a 1-Plane Graph into a Straight-line Drawing in Linear Time

    Full text link
    Thomassen characterized some 1-plane embedding as the forbidden configuration such that a given 1-plane embedding of a graph is drawable in straight-lines if and only if it does not contain the configuration [C. Thomassen, Rectilinear drawings of graphs, J. Graph Theory, 10(3), 335-341, 1988]. In this paper, we characterize some 1-plane embedding as the forbidden configuration such that a given 1-plane embedding of a graph can be re-embedded into a straight-line drawable 1-plane embedding of the same graph if and only if it does not contain the configuration. Re-embedding of a 1-plane embedding preserves the same set of pairs of crossing edges. We give a linear-time algorithm for finding a straight-line drawable 1-plane re-embedding or the forbidden configuration.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016). This is an extended abstract. For a full version of this paper, see Hong S-H, Nagamochi H.: Re-embedding a 1-Plane Graph into a Straight-line Drawing in Linear Time, Technical Report TR 2016-002, Department of Applied Mathematics and Physics, Kyoto University (2016

    Compact Drawings of 1-Planar Graphs with Right-Angle Crossings and Few Bends

    Full text link
    We study the following classes of beyond-planar graphs: 1-planar, IC-planar, and NIC-planar graphs. These are the graphs that admit a 1-planar, IC-planar, and NIC-planar drawing, respectively. A drawing of a graph is 1-planar if every edge is crossed at most once. A 1-planar drawing is IC-planar if no two pairs of crossing edges share a vertex. A 1-planar drawing is NIC-planar if no two pairs of crossing edges share two vertices. We study the relations of these beyond-planar graph classes (beyond-planar graphs is a collective term for the primary attempts to generalize the planar graphs) to right-angle crossing (RAC) graphs that admit compact drawings on the grid with few bends. We present four drawing algorithms that preserve the given embeddings. First, we show that every nn-vertex NIC-planar graph admits a NIC-planar RAC drawing with at most one bend per edge on a grid of size O(n)×O(n)O(n) \times O(n). Then, we show that every nn-vertex 1-planar graph admits a 1-planar RAC drawing with at most two bends per edge on a grid of size O(n3)×O(n3)O(n^3) \times O(n^3). Finally, we make two known algorithms embedding-preserving; for drawing 1-planar RAC graphs with at most one bend per edge and for drawing IC-planar RAC graphs straight-line

    Managing Knowledge workers - Chilean Oenologists

    Get PDF

    A Generalization of the Directed Graph Layering Problem

    Get PDF
    The Directed Layering Problem (DLP) solves a step of the widely used layer-based layout approach to automatically draw directed acyclic graphs. To cater for cyclic graphs, classically a preprocessing step is used that solves the Feedback Arc Set Problem (FASP)to make the graph acyclic before a layering is determined. Here, we present the Generalized Layering Problem (GLP) which solves the combination of DLP and FASP simultaneously, allowing general graphs as input. We show GLP to be NP- complete, present integer programming models to solve it, and perform thorough evaluations on different sets of graphs and with different implementations for the steps of the layer- based approach. We observe that GLP reduces the number of dummy nodes significantly, can produce more compact drawings and improves on graphs where DLP yields poor aspect ratios
    corecore