290 research outputs found

    Consumption of freshwater fish: A variable but significant risk factor for PFOS exposure

    Get PDF
    PFOS, PFOA, PFNA and PFHxS are the PFAS substances that currently contribute most to human exposure, and in 2020 the European Food Safety Authority (EFSA) presented a draft opinion on a tolerable intake of 8 ng/kg/week for the sum of these four substances (equaling 0.42 mu g/kg if expressed as an annual dose). Diet is usually the dominating exposure pathway, and in particular the intake of PFOS has been shown to be strongly related to the consumption of fish and seafood. Those who eat freshwater fish may be especially at risk since freshwater and its biota typically display higher PFOS concentrations than marine systems. In this study, we estimated the range in PFOS intake among average Swedish "normal" and "high" consumers of freshwater fish. By average we mean persons of average weight who eat average-sized portions. The "normal consumers" were assumed to eat freshwater fish 3 times per year, and the "high consumers" once a week. Under these assumptions, the yearly tolerable intake for "normal" and "high" consumers is reached when the PFOS concentrations in fish equals 59 and 3.4 mu g per kg fish meat. For this study, PFOS concentrations in the muscle tissue of edible-sized perch, pike and pikeperch were retrieved from three different Swedish datasets, covering both rural and urban regions and a total of 78 different inland waters. Mean PFOS concentrations in fish from these sites varied from 0.3 to 750 mu g/kg. From the available data, the annual min-max dietary PFOS intake for male "normal consumers" was found to be in the range 0.0021-5.4 mu g/kg/yr for the evaluated scenarios, with median values of 0.02-0.16 mu g/kg/yr. For male "high consumers", the total intake range was estimated to be 0.04-93 mu g/kg/yr, with median values being 0.27-1.6 mu g/kg/yr. For women, the exposure estimates were slightly lower, about 79% of the exposure in men. Despite highly variable PFOS concentrations in fish from different sites, we conclude that the three most commonly consumed freshwater species in Sweden constitute an important source for the total annual intake even for people who eat this kind of fish only a few times per year. The analyses of PFOA, PFNA and PFHxS showed values which were all below detection limit, and their contribution to the total PFAS intake via freshwater fish consumption is negligible in comparison to PFOS

    Comparison of aromatic hydrocarbon measurements made by PTR-MS, DOAS and GC-FID during the MCMA 2003 Field Experiment

    Get PDF
    A comparison of aromatic hydrocarbon measurements is reported for the CENICA supersite in the district of Iztapalapa during the Mexico City Metropolitan Area field experiment in April 2003 (MCMA 2003). Data from three different measurement methods were compared: a Proton Transfer Reaction Mass Spectrometer (PTR-MS), long path measurements using a UV Differential Optical Absorption Spectrometer (DOAS), and Gas Chromatography-Flame Ionization analysis (GC-FID) of canister samples. The principle focus was on the comparison between PTR-MS and DOAS data. Lab tests established that the PTR-MS and DOAS calibrations were consistent for a suite of aromatic compounds including benzene, toluene, p-xylene, ethylbenzene, 1,2,4-trimethylbenzene, phenol and styrene. The point sampling measurements by the PTR-MS and GC-FID showed good correlations (r=0.6), and were in reasonable agreement for toluene, C2-alkylbenzenes and C3-alkylbenzenes. The PTR-MS benzene data were consistently high, indicating interference from ethylbenzene fragmentation for the 145 Td drift field intensity used in the experiment. Correlations between the open-path data measured at 16-m height over a 860-m path length (retroreflector in 430 m distance), and the point measurements collected at 37-m sampling height were best for benzene (r=0.61), and reasonably good for toluene, C2-alkylbenzenes, naphthalene, styrene, cresols and phenol (r>0.5). There was good agreement between DOAS and PTR-MS measurements of benzene after correction for the PTR-MS ethylbenzene interference. Mixing ratios measured by DOAS were on average a factor of 1.7 times greater than the PTR-MS data for toluene, C2-alkylbenzenes, naphthalene and styrene. The level of agreement for the toluene data displayed a modest dependence on wind direction, establishing that spatial gradients – horizontal, vertical, or both – in toluene mixing ratios were significant, and up to a factor of 2 despite the fact that all measurements were conducted above roof level. Our analysis highlights a potential problem in defining a VOC sampling strategy that is meaningful for the comparison with photochemical transport models: meaningful measurements require a spatial fetch that is comparable to the grid cell size of models, which is typically a few 10 km2. Long-path DOAS measurements inherently average over a larger spatial scale than point measurements. The spatial representativeness can be further increased if observations are conducted outside the surface roughness sublayer, which might require measurements at altitudes as high as 10 s of metres above roof level.Alexander von Humboldt-Stiftung (Feodor Lynen fellowship)Henry & Camille Dreyfus Foundation (Postdoctral Fellowship in Environmental Chemistry

    Distribution, magnitudes, reactivities, ratios and diurnal patterns of volatile organic compounds in the Valley of Mexico during the MCMA 2002 and 2003 field campaigns

    No full text
    International audienceA wide array of volatile organic compound (VOC) measurements was conducted in the Valley of Mexico during the MCMA-2002 and 2003 field campaigns. Study sites included locations in the urban core, in a heavily industrial area and at boundary sites in rural landscapes. In addition, a novel mobile-laboratory-based conditional sampling method was used to collect samples dominated by fresh on-road vehicle exhaust to identify those VOCs whose ambient concentrations were primarily due to vehicle emissions. Five distinct analytical techniques were used: whole air canister samples with Gas Chromatography/Flame Ionization Detection (GC-FID), on-line chemical ionization using a Proton Transfer Reaction Mass Spectrometer (PTR-MS), continuous real-time detection of olefins using a Fast Olefin Sensor (FOS), and long path measurements using UV Differential Optical Absorption Spectrometers (DOAS). The simultaneous use of these techniques provided a wide range of individual VOC measurements with different spatial and temporal scales. The VOC data were analyzed to understand concentration and spatial distributions, diurnal patterns, origin and reactivity in the atmosphere of Mexico City. The VOC burden (in ppbC) was dominated by alkanes (60%), followed by aromatics (15%) and olefins (5%). The remaining 20% was a mix of alkynes, halogenated hydrocarbons, oxygenated species (esters, ethers, etc.) and other unidentified VOCs. However, in terms of ozone production, olefins were the most relevant hydrocarbons. Elevated levels of toxic hydrocarbons, such as 1,3-butadiene, benzene, toluene and xylenes were also observed. Results from these various analytical techniques showed that vehicle exhaust is the main source of VOCs in Mexico City and that diurnal patterns depend on vehicular traffic. Finally, examination of the VOC data in terms of lumped modeling VOC classes and its comparison to the VOC lumped emissions reported in other photochemical air quality modeling studies suggests that some, but not all, VOC classes are underestimated in the emissions inventory by factors of 1.1 to 3

    Distribution, magnitudes, reactivities, ratios and diurnal patterns of volatile organic compounds in the Valley of Mexico during the MCMA 2002 & 2003 field campaigns

    Get PDF
    A wide array of volatile organic compound (VOC) measurements was conducted in the Valley of Mexico during the MCMA-2002 and 2003 field campaigns. Study sites included locations in the urban core, in a heavily industrial area and at boundary sites in rural landscapes. In addition, a novel mobile-laboratory-based conditional sampling method was used to collect samples dominated by fresh on-road vehicle exhaust to identify those VOCs whose ambient concentrations were primarily due to vehicle emissions. Four distinct analytical techniques were used: whole air canister samples with Gas Chromatography/Flame Ionization Detection (GC-FID), on-line chemical ionization using a Proton Transfer Reaction Mass Spectrometer (PTR-MS), continuous real-time detection of olefins using a Fast Olefin Sensor (FOS), and long path measurements using UV Differential Optical Absorption Spectrometers (DOAS). The simultaneous use of these techniques provided a wide range of individual VOC measurements with different spatial and temporal scales. The VOC data were analyzed to understand concentration and spatial distributions, diurnal patterns, origin and reactivity in the atmosphere of Mexico City. The VOC burden (in ppbC) was dominated by alkanes (60%), followed by aromatics (15%) and olefins (5%). The remaining 20% was a mix of alkynes, halogenated hydrocarbons, oxygenated species (esters, ethers, etc.) and other unidentified VOCs. However, in terms of ozone production, olefins were the most relevant hydrocarbons. Elevated levels of toxic hydrocarbons, such as 1,3-butadiene, benzene, toluene and xylenes, were also observed. Results from these various analytical techniques showed that vehicle exhaust is the main source of VOCs in Mexico City and that diurnal patterns depend on vehicular traffic in addition to meteorological processes. Finally, examination of the VOC data in terms of lumped modeling VOC classes and its comparison to the VOC lumped emissions reported in other photochemical air quality modeling studies suggests that some alkanes are underestimated in the emissions inventory, while some olefins and aromatics are overestimated

    Polymorphisms in Genes of Relevance for Oestrogen and Oxytocin Pathways and Risk of Barrett's Oesophagus and Oesophageal Adenocarcinoma: A Pooled Analysis from the BEACON Consortium.

    Get PDF
    BACKGROUND: The strong male predominance in oesophageal adenocarcinoma (OAC) and Barrett's oesophagus (BO) continues to puzzle. Hormonal influence, e.g. oestrogen or oxytocin, might contribute. METHODS: This genetic-epidemiological study pooled 14 studies from three continents, Australia, Europe, and North America. Polymorphisms in 3 key genes coding for the oestrogen pathway (receptor alpha (ESR1), receptor beta (ESR2), and aromatase (CYP19A1)), and 3 key genes of the oxytocin pathway (the oxytocin receptor (OXTR), oxytocin protein (OXT), and cyclic ADP ribose hydrolase glycoprotein (CD38)), were analysed using a gene-based approach, versatile gene-based test association study (VEGAS). RESULTS: Among 1508 OAC patients, 2383 BO patients, and 2170 controls, genetic variants within ESR1 were associated with BO in males (p = 0.0058) and an increased risk of OAC and BO combined in males (p = 0.0023). Genetic variants within OXTR were associated with an increased risk of BO in both sexes combined (p = 0.0035) and in males (p = 0.0012). We followed up these suggestive findings in a further smaller data set, but found no replication. There were no significant associations between the other 4 genes studied and risk of OAC, BO, separately on in combination, in males and females combined or in males only. CONCLUSION: Genetic variants in the oestrogen receptor alpha and the oxytocin receptor may be associated with an increased risk of BO or OAC, but replication in other large samples are needed

    Politicizing food security governance through participation: opportunities and opposition

    Get PDF
    Since the 2007/08 food price crisis there has been a proliferation of multi-stakeholder processes (MSPs) devoted to bringing diverse perspectives together to inform and improve food security policy. While much of the literature highlights the positive contributions to be gained from an opening-up of traditionally state-led processes, there is a strong critique emerging to show that, in many instances, MSPs have de-politicizing effects. In this paper, we scrutinize MSPs in relation to de-politicization. We argue that re-building sustainable and just food systems requires alternative visions that can best be made visible through politicized policy processes. Focusing on three key conditions of politicization, we examine the UN Committee on World Food Security as a MSP where we see a process of politicization playing out through the endorsement of the ‘most-affected’ principle, which is in turn being actively contested by traditionally powerful actors. We conclude that there is a need to implement and reinforce mechanisms that deliberately politicize participation in MSPs, notably by clearly distinguishing between states and other stakeholders, as well as between categories of non-state actors.</p

    Estrogen Receptor-Beta Gene Polymorphism in women with Breast Cancer at the Imam Khomeini Hospital Complex, Iran

    Get PDF
    ER-alpha and ER-beta genes have been proven to play a significant role in breast cancer. Epidemiologic studies have revealed that age-incidence patterns of breast cancer in Middle East differ from those in the Western countries. Two selected coding regions in the ER-β gene (exons 3 and 7) were scanned in Iranian women with breast cancer (150) and in healthy individuals (147). PCR single-strand conformation polymorphism was performed. A site of silent single nucleotide polymorphism was found only on exon 7. The SNP was found only in breast cancer patients (5.7%) (χ2 = 17.122, P = 0.01). Codon 392 (C1176G) of allele 1 was found to have direct association with the occurrence of lymph node metastasis. Our data suggest that ER-β polymorphism in exon 7 codon 392 (C1176G) is correlated with various aspects of breast cancer and lymph node metastasis in our group of patients

    Monoamine related functional gene variants and relationships to monoamine metabolite concentrations in CSF of healthy volunteers

    Get PDF
    BACKGROUND: Concentrations of monoamine metabolites in human cerebrospinal fluid (CSF) have been used extensively as indirect estimates of monoamine turnover in the brain. CSF monoamine metabolite concentrations are partly determined by genetic influences. METHODS: We investigated possible relationships between DNA polymorphisms in the serotonin 2C receptor (HTR2C), the serotonin 3A receptor (HTR3A), the dopamine D(4 )receptor (DRD4), and the dopamine β-hydroxylase (DBH) genes and CSF concentrations of 5-hydroxyindolacetic acid (5-HIAA), homovanillic acid (HVA), and 3-methoxy-4-hydroxyphenylglycol (MHPG) in healthy volunteers (n = 90). RESULTS: The HTR3A 178 C/T variant was associated with 5-HIAA levels (p = 0.02). The DBH-1021 heterozygote genotype was associated with 5-HIAA (p = 0.0005) and HVA (p = 0.009) concentrations. Neither the HTR2C Cys23Ser variant, nor the DRD4 -521 C/T variant were significantly associated with any of the monoamine metabolites. CONCLUSIONS: The present results suggest that the HTR3A and DBH genes may participate in the regulation of dopamine and serotonin turnover rates in the central nervous system

    Physiogenomic analysis of weight loss induced by dietary carbohydrate restriction

    Get PDF
    BACKGROUND: Diets that restrict carbohydrate (CHO) have proven to be a successful dietary treatment of obesity for many people, but the degree of weight loss varies across individuals. The extent to which genetic factors associate with the magnitude of weight loss induced by CHO restriction is unknown. We examined associations among polymorphisms in candidate genes and weight loss in order to understand the physiological factors influencing body weight responses to CHO restriction. METHODS: We screened for genetic associations with weight loss in 86 healthy adults who were instructed to restrict CHO to a level that induced a small level of ketosis (CHO ~10% of total energy). A total of 27 single nucleotide polymorphisms (SNPs) were selected from 15 candidate genes involved in fat digestion/metabolism, intracellular glucose metabolism, lipoprotein remodeling, and appetite regulation. Multiple linear regression was used to rank the SNPs according to probability of association, and the most significant associations were analyzed in greater detail. RESULTS: Mean weight loss was 6.4 kg. SNPs in the gastric lipase (LIPF), hepatic glycogen synthase (GYS2), cholesteryl ester transfer protein (CETP) and galanin (GAL) genes were significantly associated with weight loss. CONCLUSION: A strong association between weight loss induced by dietary CHO restriction and variability in genes regulating fat digestion, hepatic glucose metabolism, intravascular lipoprotein remodeling, and appetite were detected. These discoveries could provide clues to important physiologic adaptations underlying the body mass response to CHO restriction
    corecore