5,088 research outputs found

    The MAX Wiggler

    Get PDF

    Signatures of superconducting gap inhomogeneities in optical properties

    Full text link
    Scanning tunneling spectroscopy applied to the high-TcT_{c} cuprates has revealed significant spatial inhomogeneity on the nanoscale. Regions on the order of a coherence length in size show variations of the magnitude of the superconducting gap of order ±20\pm20% or more. An important unresolved question is whether or not these variations are also present in the bulk, and how they influence superconducting properties. As many theories and data analyses for high-TcT_{c} superconductivity assume spatial homogeneity of the gap magnitude, this is a pressing question. We consider the far-infrared optical conductivity and evaluate, within an effective medium approximation, what signatures of spatial variations in gap magnitude are present in various optical quantities. In addition to the case of d-wave superconductivity, relevant to the high-TcT_c cuprates, we have also considered s-wave gap symmetry in order to provide expected signatures of inhomogeneities for superconductors in general. While signatures of gap inhomogeneities can be strongly manifested in s-wave superconductors, we find that the far-infrared optical conductivity in d-wave is robust against such inhomogeneity.Comment: 8 pages, 7 figure

    Bosonic D-branes at finite temperature with an external field

    Get PDF
    Bosonic boundary states at finite temperature are constructed as solutions of boundary conditions at T≠0T\neq 0 for bosonic open strings with a constant gauge field FabF_{ab} coupled to the boundary. The construction is done in the framework of thermo field dynamics where a thermal Bogoliubov transformation maps states and operators to finite temperature. Boundary states are given in terms of states from the direct product space between the Fock space of the closed string and another identical copy of it. By analogy with zero temperature, the boundary states heve the interpretation of DpDp-brane at finite temperature. The boundary conditions admit two different solutions. The entropy of the closed string in a DpDp-brane state is computed and analysed. It is interpreted as the entropy of the DpDp-brane at finite temperature.Comment: 21 pages, Latex, revised version with minor corrections and references added, to be published in Phys. Rev.

    Symmetry Breaking in the Schr\"odinger Representation for Chern-Simons Theories

    Full text link
    This paper discusses the phenomenon of spontaneous symmetry breaking in the Schr\"odinger representation formulation of quantum field theory. The analysis is presented for three-dimensional space-time abelian gauge theories with either Maxwell, Maxwell-Chern-Simons, or pure Chern-Simons terms as the gauge field contribution to the action, each of which leads to a different form of mass generation for the gauge fields.Comment: 16pp, LaTeX , UCONN-94-

    Two-point phase correlations of a one-dimensional bosonic Josephson junction

    Full text link
    We realize a one-dimensional Josephson junction using quantum degenerate Bose gases in a tunable double well potential on an atom chip. Matter wave interferometry gives direct access to the relative phase field, which reflects the interplay of thermally driven fluctuations and phase locking due to tunneling. The thermal equilibrium state is characterized by probing the full statistical distribution function of the two-point phase correlation. Comparison to a stochastic model allows to measure the coupling strength and temperature and hence a full characterization of the system

    First results of the ROSEBUD Dark Matter experiment

    Full text link
    Rare Objects SEarch with Bolometers UndergrounD) is an experiment which attempts to detect low mass Weak Interacting Massive Particles (WIMPs) through their elastic scattering off Al and O nuclei. It consists of three small sapphire bolometers (of a total mass of 100 g) with NTD-Ge sensors in a dilution refrigerator operating at 20 mK in the Canfranc Underground Laboratory. We report in this paper the results of several runs (of about 10 days each) with successively improved energy thresholds, and the progressive background reduction obtained by improvement of the radiopurity of the components and subsequent modifications in the experimental assembly, including the addition of old lead shields. Mid-term plans and perspectives of the experiment are also presented.Comment: 14 pages, 8 figures, submitted to Astroparticle Physic
    • …
    corecore