153 research outputs found

    Theory of ferromagnetic (III,Mn)V semiconductors

    Get PDF
    The body of research on (III,Mn)V diluted magnetic semiconductors initiated during the 1990's has concentrated on three major fronts: i) the microscopic origins and fundamental physics of the ferromagnetism that occurs in these systems, ii) the materials science of growth and defects and iii) the development of spintronic devices with new functionalities. This article reviews the current status of the field, concentrating on the first two, more mature research directions. From the fundamental point of view, (Ga,Mn)As and several other (III,Mn)V DMSs are now regarded as textbook examples of a rare class of robust ferromagnets with dilute magnetic moments coupled by delocalized charge carriers. Both local moments and itinerant holes are provided by Mn, which makes the systems particularly favorable for realizing this unusual ordered state. Advances in growth and post-growth treatment techniques have played a central role in the field, often pushing the limits of dilute Mn moment densities and the uniformity and purity of materials far beyond those allowed by equilibrium thermodynamics. In (III,Mn)V compounds, material quality and magnetic properties are intimately connected. In the review we focus on the theoretical understanding of the origins of ferromagnetism and basic structural, magnetic, magneto-transport, and magneto-optical characteristics of simple (III,Mn)V epilayers, with the main emphasis on (Ga,Mn)As. The conclusions we arrive at are based on an extensive literature covering results of complementary ab initio and effective Hamiltonian computational techniques, and on comparisons between theory and experiment.Comment: 58 pages, 49 figures Version accepted for publication in Rev. Mod. Phys. Related webpage: http://unix12.fzu.cz/ms

    Diquat Derivatives: Highly Active, Two-Dimensional Nonlinear Optical Chromophores with Potential Redox Switchability

    Get PDF
    In this article, we present a detailed study of structure−activity relationships in diquaternized 2,2′-bipyridyl (diquat) derivatives. Sixteen new chromophores have been synthesized, with variations in the amino electron donor substituents, π-conjugated bridge, and alkyl diquaternizing unit. Our aim is to combine very large, two-dimensional (2D) quadratic nonlinear optical (NLO) responses with reversible redox chemistry. The chromophores have been characterized as their PF_6^− salts by using various techniques including electronic absorption spectroscopy and cyclic voltammetry. Their visible absorption spectra are dominated by intense π → π^* intramolecular charge-transfer (ICT) bands, and all show two reversible diquat-based reductions. First hyperpolarizabilities β have been measured by using hyper-Rayleigh scattering with an 800 nm laser, and Stark spectroscopy of the ICT bands affords estimated static first hyperpolarizabilities β_0. The directly and indirectly derived β values are large and increase with the extent of π-conjugation and electron donor strength. Extending the quaternizing alkyl linkage always increases the ICT energy and decreases the E_(1/2) values for diquat reduction, but a compensating increase in the ICT intensity prevents significant decreases in Stark-based β_0 responses. Nine single-crystal X-ray structures have also been obtained. Time-dependent density functional theory clarifies the molecular electronic/optical properties, and finite field calculations agree with polarized HRS data in that the NLO responses of the disubstituted species are dominated by ‘off-diagonal’ β_(zyy) components. The most significant findings of these studies are: (i) β_0 values as much as 6 times that of the chromophore in the technologically important material (E)-4′-(dimethylamino)-N-methyl-4-stilbazolium tosylate; (ii) reversible electrochemistry that offers potential for redox-switching of optical properties over multiple states; (iii) strongly 2D NLO responses that may be exploited for novel practical applications; (iv) a new polar material, suitable for bulk NLO behavior

    Phonon drag thermopower and weak localization

    Full text link
    Previous experimental work on a two-dimensional (2D) electron gas in a Si-on-sapphire device led to the conclusion that both conductivity and phonon drag thermopower SgS^g are affected to the same relative extent by weak localization. The present paper presents further experimental and theoretical results on these transport coefficients for two very low mobility 2D electron gases in δ\delta-doped GaAs/Gax_xAl1x_{1-x}As quantum wells. The experiments were carried out in the temperature range 3-7K where phonon drag dominates the thermopower and, contrary to the previous work, the changes observed in the thermopower due to weak localization were found to be an order of magnitude less than those in the conductivity. A theoretical framework for phonon drag thermopower in 2D and 3D semiconductors is presented which accounts for this insensitivity of SgS^g to weak localization. It also provides transparent physical explanations of many previous experimental and theoretical results.Comment: 19 page Revtex file, 3 Postscript figur

    Sustainability appraisal: Jack of all trades, master of none?

    Get PDF
    Sustainable development is a commonly quoted goal for decision making and supports a large number of other discourses. Sustainability appraisal has a stated goal of supporting decision making for sustainable development. We suggest that the inherent flexibility of sustainability appraisal facilitates outcomes that often do not adhere to the three goals enshrined in most definitions of sustainable development: economic growth, environmental protection and enhancement, and the wellbeing of the human population. Current practice is for sustainable development to be disenfranchised through the interpretation of sustainability, whereby the best alternative is good enough even when unsustainable. Practitioners must carefully and transparently review the frameworks applied during sustainability appraisal to ensure that outcomes will meet the three goals, rather than focusing on a discourse that emphasises one or more goals at the expense of the other(s)

    Water Managers' Boundary Judgments and Adaptive Water Governance. An Analysis of the Dutch Haringvliet Sluices Case

    Get PDF
    __Abstract__ In this paper, we explore how managing actors' boundary judgments influence the adaptability of water governance. We approach this question by examining the relationship between the way water managers frame, and act in, complex water issues on the one hand and develop adaptive water governance strategies on the other. We define four categories of boundary judgments made by water managers in order to deal with the complexities in water governance issues. An in-depth case study analysis of an attempt to adjust the management of the water regime in the south-west Delta of the Netherlands is provided in order to reconstruct the water managers' boundary judgments and their impact upon governance strategies used. We found that, most of the time, the water managers involved predominantly made tight boundary judgments. These tight boundary judgments seemed to hamper the mutual learning process among a variety of stakeholders that is needed to realize adaptive water governance. We argue that wide boundary judgments enhance the chance of realizing adaptive practices and build upon exploration, learning, and connection

    Nonvolatile ferroelectric control of ferromagnetism in (Ga,Mn)As

    Full text link
    There is currently much interest in materials and structures that provide coupled ferroelectric and ferromagnetic responses, with a long-term goal of developing new memories and spintronic logic elements. Within the field there is a focus on composites coupled by magnetostrictive and piezoelectric strain transmitted across ferromagnetic-ferroelectric interfaces, but substrate clamping limits the response in the supported multilayer configuration favoured for devices. This constraint is avoided in a ferroelectric-ferromagnetic bilayer in which the magnetic response is modulated by the electric field of the poled ferroelectric. Here, we report the realization of such a device using a diluted magnetic semiconductor (DMS) channel and a polymer ferroelectric gate. Polarization reversal of the gate by a single voltage pulse results in a persistent modulation of the Curie temperature as large as 5%. The device demonstrates direct and quantitatively understood electric-fieldmediated coupling in a multiferroic bilayer and may provide new routes to nanostructured DMS materials and devices via ferroelectric domain nanopatterning. The successful implementation of a polymer-ferroelectric gate fieldeffect transistor (FeFET) with a DMS channel adds a new functionality to semiconductor spintronics and may be of importance for future low-voltage spintronics devices and memory structures.Comment: 19 pages, 5 figure

    Loop Quantum Gravity

    Get PDF
    The problem of finding the quantum theory of the gravitational field, and thus understanding what is quantum spacetime, is still open. One of the most active of the current approaches is loop quantum gravity. Loop quantum gravity is a mathematically well-defined, non-perturbative and background independent quantization of general relativity, with its conventional matter couplings. The research in loop quantum gravity forms today a vast area, ranging from mathematical foundations to physical applications. Among the most significative results obtained are: (i) The computation of the physical spectra of geometrical quantities such as area and volume; which yields quantitative predictions on Planck-scale physics. (ii) A derivation of the Bekenstein-Hawking black hole entropy formula. (iii) An intriguing physical picture of the microstructure of quantum physical space, characterized by a polymer-like Planck scale discreteness. This discreteness emerges naturally from the quantum theory and provides a mathematically well-defined realization of Wheeler's intuition of a spacetime ``foam''. Long standing open problems within the approach (lack of a scalar product, overcompleteness of the loop basis, implementation of reality conditions) have been fully solved. The weak part of the approach is the treatment of the dynamics: at present there exist several proposals, which are intensely debated. Here, I provide a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.Comment: Review paper written for the electronic journal `Living Reviews'. 34 page

    Magnetotransport in a pseudomorphic GaAs/GaInAs/GaAlAs heterostructure with a Si delta-doping layer

    Full text link
    Magnetotransport properties of a pseudomorphic GaAs/Ga0.8In0.2As/Ga0.75Al0.25As heterostructure are investigated in pulsed magnetic fields up to 50 T and at temperatures of T=1.4 K and 4.2 K. The structure studied consists of a Si delta-layer parallel to a Ga0.8In0.2As quantum well (QW). The dark electron density of the structure is n_e=1.67x 10^16 m^-2. By illumination the density can be increased up to a factor of 4; this way the second subband in the Ga0.8In0.2As QW can become populated as well as the Si delta-layer. The presence of electrons in the delta-layer results in drastic changes in the transport data, especially at magnetic fields beyond 30 T. The phenomena observed are interpreted as: 1) magnetic freeze-out of carriers in the delta-layer when a low density of electrons is present in the delta-layer, and 2) quantization of the electron motion in the two dimensional electron gases in both the Ga0.8In0.2As QW and the Si delta-layer in the case of high densities. These conclusions are corroborated by the numerical results of our theoretical model. We obtain a satisfactory agreement between model and experiment.Comment: 23 pages, RevTex, 11 Postscript figures (accepted for Phys. Rev. B
    corecore