361 research outputs found
Use of Surcharges as Treatment of Residual Soil Foundation - A Case History
Predetermined locations for storage of leaching materials needed total warranty against cracking as result of differential settlements. Two stockpiles had to be located on a platform, one placed in area of low height cuts of unsaturated residual soils, the other over fills placed without compaction criteria over saturated clayey soils of low consistency. It was decided to preload the platform in order to minimize future absolute and differential settlements, reducing them to allowable limits. The systematic interpretation of the instrumentation allowed the optimization of the treatment. The behaviour during unloading of the soils indicated heaves much smaller than the limits preestablished
Density Matrix Approach to Local Hilbert Space Reduction
We present a density matrix approach for treating systems with a large or
infinite number of degrees of freedom per site with exact diagonalization or
the density matrix renormalization group. The method is demonstrated on the 1D
Holstein model of electrons coupled to Einstein phonons. In this system, two or
three optimized phonon modes per site give results as accurate as with 10-100
bare phonon levels per site.Comment: 4 pages, 4 figure
Microfluidic synthesis of monodisperse and size-tunable CsPbBr3 supraparticles
The highly controlled, microfluidic template-assisted self-assembly of CsPbBr3 nanocrystals into spherical supraparticles is presented, achieving precise control over average supraparticle size through the variation of nanocrystal concentration and droplet size; thus facilitating the synthesis of highly monodisperse, sub-micron supraparticles (with diameters between 280 and 700 nm)
A miniaturised autonomous sensor based on nanowire materials platform: the SiNAPS mote
A micro-power energy harvesting system based on core(crystalline Si)-shell(amorphous Si) nanowire solar cells together with a nanowire-modified CMOS sensing platform have been developed to be used in a dust-sized autonomous chemical sensor node. The mote (SiNAPS) is augmented by low-power electronics for power management and sensor interfacing, on a chip area of 0.25mm2. Direct charging of the target battery (e.g., NiMH microbattery) is achieved with end-to-end efficiencies up to 90% at AM1.5 illumination and 80% under 100 times reduced intensity. This requires matching the voltages of the photovoltaic module and the battery circumventing maximum power point tracking. Single solar cells show efficiencies up to 10% under AM1.5 illumination and open circuit voltages, Voc, of 450-500mV. To match the battery’s voltage the miniaturised solar cells (~1mm2 area) are connected in series via wire bonding. The chemical sensor platform (mm2 area) is set up to detect hydrogen gas concentration in the low ppm range and over a broad temperature range using a low power sensing interface circuit. Using Telran TZ1053 radio to send one sample measurement of both temperature and H2 concentration every 15 seconds, the average and active power consumption for the SiNAPS mote are less than 350nW and 2.1 μW respectively. Low-power miniaturised chemical sensors of liquid analytes through microfluidic delivery to silicon nanowires are also presented. These components demonstrate the potential of further miniaturization and application of sensor nodes beyond the typical physical sensors, and are enabled by the nanowire materials platform
Opto-mechanical measurement of micro-trap via nonlinear cavity enhanced Raman scattering spectrum
High-gain resonant nonlinear Raman scattering on trapped cold atoms within a
high-fineness ring optical cavity is simply explained under a nonlinear
opto-mechanical mechanism, and a proposal using it to detect frequency of
micro-trap on atom chip is presented. The enhancement of scattering spectrum is
due to a coherent Raman conversion between two different cavity modes mediated
by collective vibrations of atoms through nonlinear opto-mechanical couplings.
The physical conditions of this technique are roughly estimated on Rubidium
atoms, and a simple quantum analysis as well as a multi-body semiclassical
simulation on this nonlinear Raman process is conducted.Comment: 7 pages, 2 figure
Characterisation of the muon beams for the Muon Ionisation Cooling Experiment
A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.2–2.3 π mm-rad horizontally and 0.6–1.0 π mm-rad vertically, a horizontal dispersion of 90–190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE
Multiplicity distribution and spectra of negatively charged hadrons in Au+Au collisions at sqrt(s_nn) = 130 GeV
The minimum bias multiplicity distribution and the transverse momentum and
pseudorapidity distributions for central collisions have been measured for
negative hadrons (h-) in Au+Au interactions at sqrt(s_nn) = 130 GeV. The
multiplicity density at midrapidity for the 5% most central interactions is
dNh-/deta|_{eta = 0} = 280 +- 1(stat)+- 20(syst), an increase per participant
of 38% relative to ppbar collisions at the same energy. The mean transverse
momentum is 0.508 +- 0.012 GeV/c and is larger than in central Pb+Pb collisions
at lower energies. The scaling of the h- yield per participant is a strong
function of pt. The pseudorapidity distribution is almost constant within
|eta|<1.Comment: 6 pages, 3 figure
MICE: The muon ionization cooling experiment. Step I: First measurement of emittance with particle physics detectors
Copyright @ 2011 APSThe Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam will be measured in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in Liquid Hydrogen (LH2) absorbers to RF cavity acceleration. A second spectrometer, identical to the first, and a second muon identification system will measure the outgoing emittance. In the 2010 run at RAL the muon beamline and most detectors were fully commissioned and a first measurement of the emittance of the muon beam with particle physics (time-of-flight) detectors was performed. The analysis of these data was recently completed and is discussed in this paper. Future steps for MICE, where beam emittance and emittance reduction (cooling) are to be measured with greater accuracy, are also presented.This work was supported by NSF grant PHY-0842798
- …