284 research outputs found

    Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise II. Fully discrete schemes

    Get PDF
    We present an abstract framework for analyzing the weak error of fully discrete approximation schemes for linear evolution equations driven by additive Gaussian noise. First, an abstract representation formula is derived for sufficiently smooth test functions. The formula is then applied to the wave equation, where the spatial approximation is done via the standard continuous finite element method and the time discretization via an I-stable rational approximation to the exponential function. It is found that the rate of weak convergence is twice that of strong convergence. Furthermore, in contrast to the parabolic case, higher order schemes in time, such as the Crank-Nicolson scheme, are worthwhile to use if the solution is not very regular. Finally we apply the theory to parabolic equations and detail a weak error estimate for the linearized Cahn-Hilliard-Cook equation as well as comment on the stochastic heat equation

    An effective mass theorem for the bidimensional electron gas in a strong magnetic field

    Full text link
    We study the limiting behavior of a singularly perturbed Schr\"odinger-Poisson system describing a 3-dimensional electron gas strongly confined in the vicinity of a plane (x,y)(x,y) and subject to a strong uniform magnetic field in the plane of the gas. The coupled effects of the confinement and of the magnetic field induce fast oscillations in time that need to be averaged out. We obtain at the limit a system of 2-dimensional Schr\"odinger equations in the plane (x,y)(x,y), coupled through an effective selfconsistent electrical potential. In the direction perpendicular to the magnetic field, the electron mass is modified by the field, as the result of an averaging of the cyclotron motion. The main tools of the analysis are the adaptation of the second order long-time averaging theory of ODEs to our PDEs context, and the use of a Sobolev scale adapted to the confinement operator

    The phase shift of line solitons for the KP-II equation

    Full text link
    The KP-II equation was derived by [B. B. Kadomtsev and V. I. Petviashvili,Sov. Phys. Dokl. vol.15 (1970), 539-541] to explain stability of line solitary waves of shallow water. Stability of line solitons has been proved by [T. Mizumachi, Mem. of vol. 238 (2015), no.1125] and [T. Mizumachi, Proc. Roy. Soc. Edinburgh Sect. A. vol.148 (2018), 149--198]. It turns out the local phase shift of modulating line solitons are not uniform in the transverse direction. In this paper, we obtain the L∞L^\infty-bound for the local phase shift of modulating line solitons for polynomially localized perturbations

    Numerical study of oscillatory regimes in the Kadomtsev-Petviashvili equation

    Full text link
    The aim of this paper is the accurate numerical study of the KP equation. In particular we are concerned with the small dispersion limit of this model, where no comprehensive analytical description exists so far. To this end we first study a similar highly oscillatory regime for asymptotically small solutions, which can be described via the Davey-Stewartson system. In a second step we investigate numerically the small dispersion limit of the KP model in the case of large amplitudes. Similarities and differences to the much better studied Korteweg-de Vries situation are discussed as well as the dependence of the limit on the additional transverse coordinate.Comment: 39 pages, 36 figures (high resolution figures at http://www.mis.mpg.de/preprints/index.html

    On critical behaviour in systems of Hamiltonian partial differential equations

    Get PDF
    We study the critical behaviour of solutions to weakly dispersive Hamiltonian systems considered as perturbations of elliptic and hyperbolic systems of hydrodynamic type with two components. We argue that near the critical point of gradient catastrophe of the dispersionless system, the solutions to a suitable initial value problem for the perturbed equations are approximately described by particular solutions to the Painlev\ue9-I (PI) equation or its fourth-order analogue P2I. As concrete examples, we discuss nonlinear Schr\uf6dinger equations in the semiclassical limit. A numerical study of these cases provides strong evidence in support of the conjecture

    «La relation de limitation et d’exception dans le français d’aujourd’hui : exceptĂ©, sauf et hormis comme pivots d’une relation algĂ©brique »

    Get PDF
    L’analyse des emplois prĂ©positionnels et des emplois conjonctifs d’ “exceptĂ©â€, de “sauf” et d’ “hormis” permet d’envisager les trois prĂ©positions/conjonctions comme le pivot d’un binĂŽme, comme la plaque tournante d’une structure bipolaire. PlacĂ©es au milieu du binĂŽme, ces prĂ©positions sont forcĂ©es par leur sĂ©mantisme originaire dĂ»ment mĂ©taphorisĂ© de jouer le rĂŽle de marqueurs d’inconsĂ©quence systĂ©matique entre l’élĂ©ment se trouvant Ă  leur gauche et celui qui se trouve Ă  leur droite. L’opposition qui surgit entre les deux Ă©lĂ©ments n’est donc pas une incompatibilitĂ© naturelle, intrinsĂšque, mais extrinsĂšque, induite. Dans la plupart des cas (emplois limitatifs), cette opposition prend la forme d’un rapport entre une « classe » et le « membre (soustrait) de la classe », ou bien entre un « tout » et une « partie » ; dans d’autres (emplois exceptifs), cette opposition se manifeste au contraire comme une attaque de front portĂ©e par un « tout » Ă  un autre « tout ». De plus, l’inconsĂ©quence induite mise en place par la prĂ©position/conjonction paraĂźt, en principe, tout Ă  fait insurmontable. Dans l’assertion « les Ă©cureuils vivent partout, sauf en Australie » (que l’on peut expliciter par « Les Ă©cureuils vivent partout, sauf [qu’ils ne vivent pas] en Australie »), la prĂ©position semble en effet capable d’impliquer le prĂ©dicat principal avec signe inverti, et de bĂątir sur une telle implication une sorte de sous Ă©noncĂ© qui, Ă  la rigueur, est totalement inconsĂ©quent avec celui qui le prĂ©cĂšde (si « les Ă©cureuils ne vivent pas en Australie », le fait qu’ils « vivent partout » est faux). NĂ©anmoins, l’analyse montre qu’alors que certaines de ces oppositions peuvent enfin ĂȘtre dĂ©passĂ©es, d’autres ne le peuvent pas. C’est, respectivement, le cas des relations limitatives et des relations exceptives. La relation limitative, impliquant le rapport « tout » - « partie », permet de rĂ©soudre le conflit dans les termes d’une somme algĂ©brique entre deux sous Ă©noncĂ©s pourvus de diffĂ©rent poids informatif et de signe contraire. Les valeurs numĂ©riques des termes de la somme Ă©tant dĂ©sĂ©quilibrĂ©es, le rĂ©sultat est toujours autre que zĂ©ro. La relation exceptive, au contraire, qui n’implique pas le rapport « tout » - « partie », n’est pas capable de rĂ©soudre le conflit entre deux sous Ă©noncĂ©s pourvus du mĂȘme poids informatif et en mĂȘme temps de signe contraire : les valeurs numĂ©riques des termes de la somme Ă©tant symĂ©triques et Ă©gales, le rĂ©sultat sera toujours Ă©quivalent Ă  zĂ©ro
    • 

    corecore