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Abstract
We consider the stochastic nonlinear Schrödinger equations (SNLS) posed on d-
dimensional tori with either additive or multiplicative stochastic forcing. In particular,
for the one-dimensional cubic SNLS, we prove global well-posedness in L2(T). As
for other power-type nonlinearities, namely (i) (super)quintic when d = 1 and (ii)
(super)cubic when d ≥ 2, we prove local well-posedness in all scaling-subcritical
Sobolev spaces and global well-posedness in the energy space for the defocusing,
energy-subcritical problems.

Keywords Stochastic nonlinear Schrödinger equations ·Well-posedness · Stochastic
NLS

Mathematics Subject Classification 60H15

1 Introduction

1.1 Stochastic nonlinear Schrödinger equations

In this paper, we study the following Cauchy problem associated to a stochastic non-
linear Schrödinger equation (SNLS) of the form:

{
i∂t u − �u ± |u|2ku = F(u, φξ)

u|t=0 = u0 ∈ Hs(Td)
(t, x) ∈ (0,∞) × T

d , (1.1)
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Stoch PDE: Anal Comp

where k, d ≥ 1 are integers,Td := R
d/Z

d , and u : [0,∞)×T
d → C is the unknown

stochastic process. The term F(u, φξ) is a stochastic forcing and in this paper we treat
the following cases: the additive noise, i.e.

F(u, φξ) = φξ (1.2)

and the (linear) multiplicative noise, i.e.

F(u, φξ) = u · φξ, (1.3)

where the right-hand side of (1.3) is understood as an Itô product.1 Here, ξ is a
space-time white noise, i.e. a Gaussian stochastic process with correlation function
E[ξ(t, x)ξ(s, y)] = δ(t − s)δ(x − y), where δ denotes the Dirac delta function. We
recall that the white noise is very rough: the spatial regularity of ξ is less than − d

2 .
Since the linear Schrödinger equation does not provide any smoothing properties, we
consider instead a spatially smoothed out version φξ , where φ is a linear operator from
L2(Td) into Hs(Td), on which we make certain assumptions, depending on whether
we are working with (1.2) or (1.3).

Our main goal in this paper is to prove local well-posedness of SNLS with either
additive or multiplicative noise in the Sobolev space Hs(Td), for any subcritical
non-negative regularity s (see below for the meaning of “subcritical”). In this work,
solutions to (1.1) are understood as solutions to the mild formulation

u(t) = S(t)u0 ± i
∫ t

0
S(t − t ′)(|u|2ku)(t ′) dt ′ − i�(t), t ≥ 0, (1.4)

where S(t) := e−i t� is the linear Schrödinger propagator. The term�(t) is a stochastic
convolution corresponding to the stochastic forcing F(u, φξ), see (1.11) and (1.12)
below.Our local-in-time argument uses theFourier restriction normmethod introduced
by Bourgain [6] and Klainerman andMachedon [26], as well as the periodic Strichartz
estimates proved by Bourgain and Demeter [5]. In establishing local well-posedness
for the multiplicative SNLS, we also have to combine these tools with the truncation
method used by deBouard andDebussche [15–17].Moreover, by proving probabilistic
a priori bounds on themass and energy of solutions,we establish globalwell-posedness
in (i) L2(T) for cubic nonlinearities (i.e. k = 1) when d = 1, and (ii) H1(Td) for
all defocusing energy-subcritical nonlinearities—see Theorem 1.5 and the preceding
discussion for more details.

Previously, de Bouard and Debussche [15,16] studied SNLS on R
d . They consid-

ered noise φξ that is white in time but correlated in space, where φ is a smoothing
operator from L2(Rd) to Hs(Rd). They proved global existence and uniqueness of
mild solutions in (i) L2(R) for the one-dimensional cubic SNLS and (ii) H1(Rd) for

1 Themultiplicative noise given by the Stratonovich product u◦φξ with real-valued ξ is relevant in physical
applications, as it conserves the mass of u (i.e. t �→ ‖u(t)‖2

L2x (Td )
is constant) almost surely. Our analysis

can handle either the Itô or the Stratonovich product, and we choose to work with the former for the sake
of simpler exposition.
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defocusing energy-subcritical SNLS. Other works related to SNLS on R
d include the

works by Barbu, Röckner, and Zhang [1,2] and by Hornung [23]. More recently, by
using the dispersive estimate for the linear Schrödinger operator, Oh, Pocovnicu and
Wang [32] treat additive SNLS equation with rougher noise than that considered in
[16] (see also Remark 1.9).

On the R
d setting, the arguments given in [15,16] use fixed point arguments in the

space Ct H1
x ∩ L p

t W
1,q
x ([0, T ] × R

d), for some T > 0 and some suitable p, q ≥ 1.2

In particular, they use the (deterministic) Strichartz estimates:

‖S(t) f ‖L p
t L

q
x (R×Rd ) ≤ Cp,q‖ f ‖L2

x (R
d ), (1.5)

where the pair (p, q) is admissible, i.e. 2
p + d

q = d
2 , 2 ≤ p, q,≤ ∞, and (p, q, d) �=

(2,∞, 2). On T
d , Bourgain and Demeter [5] proved the �2-decoupling conjecture,

and as a corollary, the following periodic Strichartz estimates:

∥∥S(t)P≤N f
∥∥
L p
t,x ([0,T ]×Td )

≤ Cp,T ,εN
d
2− d+2

p +ε‖ f ‖L2
x (T

d ). (1.6)

Here, P≤N is the Littlewood-Paley projection onto frequencies {n ∈ Z
d : |n| ≤ N },

p ≥ 2(d+2)
d , and ε > 0 is an arbitrarily small quantity.3 However, such Strichartz

estimates are not strong enough for a fixed point argument in mixed Lebesgue spaces
for the deterministic NLS on T

d . To overcome this problem, we shall employ the
Fourier restriction norm method by means of Xs,b-spaces defined via the norms

‖u‖Xs,b := ∥∥〈n〉s〈τ − |n|2〉bFt,x (u)(τ, n)
∥∥
L2

τ �2n(R×Zd )
. (1.7)

The indices s, b ∈ R measure the spatial and temporal regularities of functions
u ∈ Xs,b, andFt,x denotes Fourier transform of functions defined onR×T

d . This har-
monic analytic method was introduced by Bourgain [6] for the deterministic nonlinear
Schrödinger equation (NLS):

i∂t u − �u ± |u|2ku = 0. (1.8)

Independently, Klainerman and Machedon [26] used the same method in the context
of nonlinear wave equations.

1.2 Main results

We now state more precisely the problems considered here. Let (�,A, {At }t≥0, P) be
a filtrated probability space. LetW be the L2(Td)-cylindricalWiener process given by

2 Here, Ws,r (Td ) denotes the Lr -based Sobolev space defined by the Bessel potential norm:

‖u‖Ws,r (Td )
:= ‖〈∇〉su‖Lr (Td )

= ∥∥F−1(〈n〉s û(n))
∥∥
�rn (Zd )

,

where 〈n〉 :=
√
1+ |n|2. When r = 2, we have Hs (Td ) = Ws,2(Td ).

3 More recently, Killip and Vişan [24] removed the arbitrarily small loss of ε derivatives in (1.6) when
p >

2(d+2)
d . However, we do not need this scale-invariant improvement in our results.
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W (t, x, ω) :=
∑
n∈Zd

βn(t, ω)en(x), (1.9)

where {βn}n∈Zd is a family of independent complex-valued Brownian motions asso-
ciated with the filtration {At }t≥0 and en(x) := exp(2π in · x), n ∈ Z

d . The space-time
white noise ξ is given by the (distributional) time derivative of W , i.e. ξ = ∂W

∂t .
Since the spatial regularity of W is too low (more precisely, for each fixed t ≥ 0,

W (t) ∈ H− d
2−ε(Td) almost surely for any ε > 0), we consider a smoothed out ver-

sion φW as follows. Recall that a bounded linear operator φ from a separable Hilbert
space H to a Hilbert space K is Hilbert-Schmidt if

‖φ‖2L2(H ;K )
:=

∑
n∈Zd

‖φhn‖2K < ∞, (1.10)

where {hn}n∈Zd is an orthonormal basis of H (recall that‖·‖L2(H ;K ) does not dependon
the choice of {hn}n∈Zd ). Throughout this work, we assume φ ∈ L2(L2(Td); Hs(Td))

for appropriate s ≥ 0. In this case, φW is a Wiener process with sample paths in
Hs(Td) and its time derivative φξ corresponds to a noise which is white in time and
correlated in space (with correlation function depending on φ). We can now define the
stochastic convolution �(t) from (1.4) for (i) the additive noise (1.2):

�(t) :=
∫ t

0
S(t − t ′)φ dW (t ′) (1.11)

and (ii) the multiplicative noise (1.3):

�(t) := �[u](t) :=
∫ t

0
S(t − t ′)u(t ′)φ dW (t ′). (1.12)

For the deterministic nonlinear Schrödinger equation (NLS), i.e. F ≡ 0 in (1.1),
there is the so-called scaling-critical regularity and is given by

scrit := d

2
− 1

k
. (1.13)

See [35, Section 3.1]. In this paper, we consider the Cauchy problem (1.1) (with either
(1.2) or (1.3)) posed in Hs(Td) with s > scrit, i.e. we consider the scaling-subcritical
Cauchy problem. For the one-dimensional cubic problems (i.e. when (d, k) = (1, 1)),
we also require s ≥ 0. We are now ready to state our first result.

Theorem 1.1 (Local well-posedness for additive SNLS)Given s > scrit non-negative,
let φ ∈ L2(L2(Td); Hs(Td)) and F(u, φ) = φξ . Then for any u0 ∈ Hs(Td), there
exist a stopping time T that is almost surely positive, and a unique solution u ∈
C([0, T ]; Hs(Td)) ∩ Xs, 12−ε([0, T ]) to SNLS with additive noise, for some ε > 0.

Here, Xs,b([0, T ]) is a time restricted version of the Xs,b-space, see (2.5) below.
The proof of this result relies on a fixed point argument for (1.4) in a closed subset of
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Xs,b([0, T ]).We are required to use b = 1
2−ε in order to capture the temporal regular-

ity of�. Since Xs,b([0, T ]) does not embed into C([0, T ]; Hs)when b < 1
2 , we need

to prove the continuity in time of solutions a posteriori. Our local well-posedness result
above (as well as Theorem 1.6 below) covers all non-negative subcritical regularities.

Remark 1.2 We point out that scrit is negative only for the one-dimensional cubic
NLS, i.e. (d, k) = (1, 1) for which scrit = − 1

2 . Below L2(T), the deterministic cubic
NLS on T was shown to be ill-posed. Indeed, Christ, Colliander and Tao [11] and
Molinet [29] showed that the solution map u0 ∈ Hs(T) �→ u(t) ∈ Hs(T) is discon-
tinuous whenever s < 0. More recently, Guo and Oh [19] showed an even stronger
ill-posedness result, in the sense that for any u0 ∈ Hs(T), s ∈ (− 1

8 , 0), there is no
distributional solution u that is also a limit of smooth solutions inC([−T , T ]; Hs(T)).
In the (super)critical regime, i.e. for s ≤ − 1

2 = scrit, Kishimoto [25] showed a norm
inflation phenomenon at any u0 ∈ Hs(T): for any ε > 0 and u0 ∈ Hs(T), there exists
a solution uε to NLS such that ‖uε(0) − u0‖Hs (T) < ε and ‖uε(t)‖Hs (T) > ε−1 for
some t ∈ (0, ε). See also [31,33].

Regarding the one-dimensional cubic SNLS on T, we point out that recently For-
lano, Oh andWang [18] studied a renormalized (Wick ordered, see also [12]) additive
SNLS with a weaker assumption than that of Theorem 1.1 above. While we assume
that φ ∈ L2(L2(T); L2(T)), the work of [18] assumes that φ is γ -radonifying from
L2(T) into the Fourier-Lebesgue spaceFLs,p(T)with s > 0 and 1 < p < ∞. In par-
ticular, this allows them to handle almost space-time white noise, namely φ = 〈∂x 〉−α

with α > 0 arbitrarily small.

Remark 1.3 Although we present our results for SNLS on the standard torus T
d =

R
d/Z

d , our arguments hold on any torus T
d
α = ∏d

j=1 R/α jZ , where α =
(α1, . . . , αd) ∈ [0,∞)d . This is because the periodic Strichartz estimates (1.6) of
Bourgain and Demeter [5] hold for irrational tori (Td

α is irrational if there is no γ ∈ Q
d

such that γ ·α = 0). Prior to [5], Strichartz estimates were harder to establish on irra-
tional tori—see [20] and references therein.

Remark 1.4 The deterministic NLS is locally well-posed in the critical space
Hscrit(Td), for almost all pairs (d, k), except for the cases (1, 2), (2, 1), (3, 1) which
are still open—see [7,21,22,36]. In these papers, the authors employ the critical spaces
Xs,Y s based on the spacesU 2, V 2 of Koch and Tataru [27]. We point out that Brown-
ian motions belong almost surely to V p, for p > 2, but not V 2 (hence neither to U 2).
Consequently, the spaces Xs,Y s are not suitable for obtaining local well-posedness
of SNLS.

Now let us recall the following conservation laws for the deterministic NLS:

M(u(t)) := 1

2

∫
Td

|u(t, x)|2 dx (1.14)

E(u(t)) := 1

2

∫
Td

|∇xu(t, x)|2 ± 1

2k + 2

∫
Td

|u(t, x)|2k+2 dx, (1.15)

where the sign± in (1.15) matches that in (1.1) and (1.4). Recall that SNLS (1.1) with
the + sign is called defocusing (and focusing for the − sign). We say that SNLS is
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energy-subcritical if scrit < 1 (i.e. for any k ≥ 1 when d = 1, 2 and for k = 1 when
d = 3).

For solutions of SNLS these quantities are no longer necessarily conserved. How-
ever, Itô’s lemma allows us to bound these in a probabilistic manner similarly to de
Bouard and Debussche [15,16]. Therefore, we obtain the following:

Theorem 1.5 (Global well-posedness for additive SNLS) Let s ≥ 0. Given φ ∈
L2(L2(Td); Hs(Td)), let F(u, φ) = φξ and u0 ∈ Hs(Td). Then the Hs-valued
solutions of Theorem 1.1 extend globally in time almost surely in the following cases:

(i) the (focusing or defocusing) one-dimensional cubic SNLS for all s ≥ 0;
(ii) the defocusing energy-subcritical SNLS for all s ≥ 1.

We now move onto the problem with multiplicative noise, i.e. SNLS with (1.3).
For this case, we need a stronger assumption on φ. By a slight abuse of notation,
for a bounded linear operator φ from L2(Td) to a Banach space B, we say that φ ∈
L2(L2(Td); B) if4

‖φ‖2L2(L2(Td );B)
:=

∑
n∈Zd

‖φen‖2B < ∞.

For s ∈ R and r ≥ 1, we also define the Fourier-Lebesgue space FLs,r (Td) via the
norm

‖ f ‖FLs,r (Td ) :=
∥∥〈n〉s f̂ (n)

∥∥
�rn(Z

d )
.

Clearly, when r = 2 we have FLs,r (Td) = Hs(Td) and for s1 ≤ s2 and r1 ≤ r2 we
have FLs2,r1(Td) ⊂ FLs1,r2(Td). We now state our local well-posedness result for
the multiplicative SNLS.

Theorem 1.6 (Local well-posedness for multiplicative SNLS) Given s > scrit non-
negative, let φ ∈ L2(L2(Td); Hs(Td)). If s ≤ d

2 , we further impose that

φ ∈ L2(L2(Td);FLs,r (Td)) (1.16)

for some r ∈ [1, d
d−s

)
when s > 0 and r = 1 when s = 0. Let F(u, φ) = u ·φξ . Then

for any u0 ∈ Hs(Td), there exist a stopping time T that is almost surely positive, and a

unique solution u ∈ C([0, T ]; Hs(Td))∩ Xs, 12−ε([0, T ]) to SNLS with multiplicative
noise, for some ε > 0.

Remark 1.7 If φξ is a spatially homogeneous noise, i.e. φ is translation invariant, then
the extra assumption (1.16) is superfluous. Indeed, if φ̂en(m) = 0, for all m, n ∈ Z

d ,
m �= n and φ ∈ L2(L2(Td); Hs(Td)), then φ ∈ L2(L2(Td);FLs,r (Td)) for any
r ≥ 1.

4 In fact, such operators are known as nuclear operators of order 2 and their introduction goes back to the
work of A. Grothendieck on nuclear locally convex spaces.
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We point out that an extra condition in the multiplicative case was also used by
deBouard andDebussche [16] in their study of SNLS in H1(Rd), namely they required
that φ is a γ -radonifying operator from L2(Rd) into W 1,α(Rd) for some appropriate
α, as compared to the requirement that φ is Hilbert-Schmidt from L2(Rd) into Hs(Rd)

in the additive case.

In the multiplicative case, the stochastic convolution depends on the solution u and

this forces us to work in the space in L2
(
�;C([0, T ]; Hs(Td)) ∩ Xs, 12−ε([0, T ])).

In order to control the nonlinearity in this space, we use a truncation method which
has been used for SNLS on R

d by de Bouard and Debussche [15,16]. Moreover, we
combine this method with the use of Xs,b-spaces in a similar manner as in [17], where
the same authors studied the stochastic KdV equation with low regularity initial data
on R. This introduces some technical difficulties which did not appear when using the
more classical Strichartz spaces as those used in [15,16].

Next, we prove global well-posedness of SNLS (1.1) with multiplicative noise.
Similarly to the additive case, the main ingredient is the probabilistic a priori bound
on the mass and energy of a local solution u. However, we further need to obtain
uniform control on the Xs,b-norms for solutions to truncated versions of (1.4).

Theorem 1.8 (Global well-posedness for multiplicative SNLS) Let s ≥ 0. Given φ

with the same assumptions as in Theorem 1.6, let F(u, φ) = u ·φξ and u0 ∈ Hs(Td).
Then the Hs-valued solutions of Theorem 1.6 extend globally in time in the following
cases:

(i) the (focusing or defocusing) one-dimensional cubic SNLS for all s ≥ 0;
(ii) the defocusing energy-subcritical SNLS for all s ≥ 1.

Before concluding this introduction let us state two remarks.

Remark 1.9 We point out that Theorems 1.1 and 1.6 are almost optimal for handling
the regularity of initial data since the deterministic NLS is ill-posed for s < scrit (see
Remark 1.2). In terms of the regularity of the noise, at least in the additive noise case,
it is possible to consider rougher noise by employing the Da Prato-Debussche trick,
namely by writing a solution u to (1.4) as u = v + � and considering the equation
for the residual part v. In general, this procedure allows one to treat rougher noise, see
for example [3,4,12] where they treat NLS with rough random initial data and more
recently [32] where they handled supercritical noise for the additive SNLS on R

d . In
the periodic setting however, the argument gets more complicated (see for example
[3,4] on R

d vs. [12,30] on T
d ). The actual implementation of the aforementioned

trick requires cumbersome case-by-case analysis where the number of cases grows
exponentially in k. Even for the cubic case on T

d the analysis is involved, whereas on
R
d one can use bilinear Strichartz estimates which are not available on T

d .

Remark 1.10 In the multiplicative noise case, there are well-posedness results on a
general compact Riemannian manifold M without boundaries. In [9], Brzeźniak and
Milllet use the Strichartz estimates of [10] and the standard space-time Lebesgue
spaces (i.e. without the Fourier restriction norm method). For M = T

d , Theorem 1.6
improves the result in [9] since it requires less regularity on the noise and initial data.
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In [8], Brzeźniak, Hornung, and Weiss construct martingale solutions in H1(M) for
the multiplicative SNLS with energy-subcritical defocusing nonlinearities and mass-
subcritical focusing nonlinearities.

Organization of the paper In Sect. 2, we provide some preliminaries for the
Fourier restriction norm method and prove the multilinear estimates necessary for the
local well-posedness results. In Sect. 3, we prove some properties of the stochastic
convolutions� and�[u] given respectively by (1.11) and (1.12). We prove Theorems
1.1 and 1.6 in Sect. 4. Finally, in Sect. 5 we prove the global results Theorems 1.5 and
1.8.

NotationsGiven A, B ∈ R, we use the notation A � B to mean A ≤ CB for some
constant C ∈ (0,∞) and write A ∼ B to mean A � B and B � A. We sometimes
emphasize any dependencies of the implicit constant as subscripts on �, �, and ∼;
e.g. A �p B means A ≤ CB for some constant C = C(p) ∈ (0,∞) that depends on
the parameter p. We denote by A∧ B and A∨ B the minimum and maximum between
the two quantities respectively. Also, �A� denotes the smallest integer greater or equal
to A, while �A� denotes the largest integer less than or equal to A.

Given a function g : U → C, where U is either T
d or R, our convention of the

Fourier transform of g is given by

ĝ(ξ) =
∫
U
e2π iξ ·x g(x) dx,

where ξ is either an element of Z
d (if U = T

d ) or an element of R (if U = R). For
the sake of convenience, we shall omit the 2π from our writing since it does not play
any role in our arguments.

For c ∈ R, we sometimes write c+ to denote c+ ε for sufficiently small ε > 0, and

write c− for the analogous meaning. For example, the statement ‘u ∈ Xs, 12−’ should
be read as ‘u ∈ Xs, 12−ε for sufficiently small ε > 0’.

For the sake of readability, in the proofs we sometimes omit the underlying domain
T
d from various norms, e.g. we write ‖ f ‖Hs instead of ‖ f ‖Hs (Td ) and ‖φ‖L2(L2;Hs )

instead of ‖φ‖L2(L2(Td );Hs (Td )).

2 Fourier restriction normmethod

Let s, b ∈ R. The Fourier restriction norm space Xs,b adapted to the Schrödinger
equation on T

d is the space of tempered distributions u on R×T
d such that the norm

‖u‖Xs,b :=
∥∥∥〈n〉s〈τ − |n|2〉bFt,x (u)(τ, n)

∥∥∥
�2n L

2
τ (Zd×R)

is finite. Equivalently, the Xs,b-norm can be written in its interaction representation
form:

‖u‖Xs,b =
∥∥∥〈n〉s〈τ 〉bFt,x (S(−t)u(t)) (n, τ )

∥∥∥
�2n L

2
τ (Zd×R)

, (2.1)
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where S(t) = e−i t� is the linear Schrödinger propagator. We now state some facts on
Xs,b-spaces. The interested reader can find the proof of these and further properties
in [35]. Firstly, we have the following continuous embeddings

Xs,b ↪→ C(R; Hs
x (T

d)) , for b >
1

2
, (2.2)

Xs′,b′ ↪→ Xs,b , for s′ ≥ s and b′ ≥ b. (2.3)

We have the duality relation

‖u‖Xs,b = sup
‖v‖X−s,−b≤1

∣∣∣∣
∫
R×Td

u(t, x)v(t, x) dt dx

∣∣∣∣ . (2.4)

Lemma 2.1 (Transference principle, [35, Lemma 2.9]) Let Y be a Banach space of
functions on R × T

d such that

‖eitλe±i t� f ‖Y � ‖ f ‖Hs (Td )

for all λ ∈ R and all f ∈ Hs(Td). Then, for any b > 1
2 ,

‖u‖Y � ‖u‖Xs,b

for all u ∈ Xs,b.

Given a time interval I ⊆ R, one defines the time restricted space Xs,b(I ) via the
norm

‖u‖Xs,b(I ) := inf
{‖ũ‖Xs,b : ũ|I = u

}
. (2.5)

We note that for s ≥ 0 and 0 ≤ b < 1
2 , we have

‖u‖Xs,b(I ) ∼ ‖1I (t)u(t)‖Xs,b , (2.6)

see for example [17, Lemma 2.1] for a proof (for Xs,b spaces adapted to the KdV
equation).

Lemma 2.2 (Linear estimates, [35, Proposition 2.12]) Let s ∈ R and suppose η is
smooth and compactly supported. Then, we have

‖η(t)S(t) f ‖Xs,b � ‖ f ‖Hs (Td ), for b ∈ R; (2.7)∥∥∥∥η(t)
∫ t

0
S(t − t ′)F(t ′)dt ′

∥∥∥∥
Xs,b

� ‖F‖Xs,b−1 , for b >
1

2
. (2.8)

By localizing in time, we can gain a smallness factor, as per lemma below.
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Lemma 2.3 (Time localization property, [35, Lemma 2.11]) Let s ∈ R and − 1
2 <

b′ < b < 1
2 . For any T ∈ (0, 1), we have

‖ f ‖Xs,b′ ([0,T ]) �b,b′ T
b−b′ ‖ f ‖Xs,b([0,T ]) .

We now give the proofs of the multilinear estimates necessary to control the non-
linearity |u|2ku. Recall the L4-Strichartz estimate due to Bourgain [6] (see also [35,
Proposition 2.13]):

‖u‖L4
t,x (R×T) � ‖u‖

X0, 38
. (2.9)

Lemma 2.4 Let d = 1, s ≥ 0, b ≥ 3
8 , and b′ ≤ 5

8 . Then, for any time interval I ⊂ R,
we have

‖u1u2u3‖Xs,b′−1(I ) �
3∏
j=1

‖u j‖Xs,b(I ). (2.10)

Proof By the triangle inequality it suffices to prove (2.10) for s = 0. We claim that

∣∣∣∣
∫
R×Td

u1u2u3v dxdt

∣∣∣∣ �
3∏
j=1

‖u j‖X0,b‖v‖X0,1−b′

for any factors u1, u2, u3, v. Indeed, this follows immediately from Hölder inequality
and (2.9) for each of the four factors (hence the restrictions b, 1− b′ ≥ 3

8 ). Thus, the
global-in-time version of (2.10), i.e. I = R, follows by the duality relation (2.4). For
an arbitrary time interval I , if ũ j is an extension of u j , j = 1, 2, 3, then ũ1ũ2ũ3 is an
extension of u1u2u3. We use the previous step to get

‖u1u2u3‖Xs,b′−1(I ) ≤
∥∥∥ũ1ũ2ũ3∥∥∥

Xs,b′−1
�

3∏
j=1

‖ũ j‖X0,b

and then we take infimum over all extensions ũ j ’s and (2.10) follows. ��
Due to the scaling and Galilean symmetries of the linear Schrödinger equation, the

periodic Strichartz estimate (1.6) of Bourgain and Demeter [5] is equivalent with

‖S(t)PQ f ‖L p
t,x (I×Td ) �|I | |Q| 12− d+2

pd +‖ f ‖L2
x (T

d ), (2.11)

for any d ≥ 1, p ≥ 2(d+2)
d , I ⊂ R finite time interval, and Q ⊂ R

d dyadic cube.

Here, PQ denotes the frequency projection onto Q, i.e. P̂Q f (n) = 1Q(n) f̂ (n). By
the transference principle (Lemma 2.1), we get

‖PQu‖L p
t,x (I×Td ) �|I | |Q| 12− d+2

pd +‖u‖X0,b(I ), (2.12)
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for any b > 1
2 . By interpolating (2.12) with

‖PQu‖L p
t,x (I×Td ) � |Q| 12− 1

p ‖u‖
X
0, 12− 1

p (I )
, (2.13)

(which follows immediately from Sobolev inequalities, (2.1), and the Hs(Td)-
isometry of S(−t)), we can lower the time regularity from b = 1

2 + δ to b̃ = 1
2 − δ,

for sufficiently small δ > 0. Thus, we also have

‖PQu‖L p
t,x (I×Td ) �|I |,δ |Q| 12− d+2

pd +o(δ)‖u‖
X0, 12−δ

(I )
(2.14)

Lemma 2.4 only treats the cubic nonlinearity when d = 1. We now prove the fol-
lowing generalmultilinear estimates to treat other cases. The proof borrows techniques
from [20].

Lemma 2.5 Let d, k ≥ 1 such that dk ≥ 2 and let I ⊂ R be a finite time interval.
Then for any s > sc, there exist b = 1

2− and b′ = 1
2+ such that

‖u1u2 · · · u2ku2k+1‖Xs,b′−1(I ) �|I |
2k+1∏
j=1

‖u j‖Xs,b(I ). (2.15)

Proof In view of (2.6), we can assume that u j (t) = 1I (t)u j (t) and thus by the duality
relation (2.4), it suffices to show

∣∣∣∣
∫
R×Td

(〈∇〉s(u1u2 · · · u2k+1)
)
v dxdt

∣∣∣∣ � ‖v‖X0,1−b′
2k+1∏
j=1

‖u j‖Xs,b . (2.16)

WeuseLittlewood-Paley decomposition:we estimate the left-hand side of (2.16)when
v = PNv, u j = PN j u j for some dyadic numbers N , N j ∈ 2Z, 1 ≤ j ≤ 2k + 1. Then
the claim follows by triangle inequality and performing the summation

∑
N1

∑
N

N�N1

∑
N2

N2≤N1

· · ·
∑
N2k+1

N2k+1≤N2k

. (2.17)

Notice that without loss of generality, we may assume that N1 ≥ N2 ≥ · · · ≥ N2k+1,
in which case we also have N � N1, and that the factors v and u j are real-valued and
non-negative.

Let ε := s − sc, and we distinguish two cases.
Case 1: N1 ∼ N2. By Hölder inequality,

Ns
∫
R×Td

u1u2 · · · u2k+1v dxdt � N
s
2
1 ‖u1‖Lq

t,x
N

s
2
2 ‖u2‖Lq

t,x

2k+1∏
j=3

‖u j‖L p
t,x
‖v‖Lrt,x ,

(2.18)
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with p, q, r chosen such that 2k−1
p + 2

q + 1
r = 1.We take p, q such that d2 − d+2

p = scrit

and d
2 − d+2

q = 1
2 scrit, or equivalently p = k(d + 2) and q = 4k(d+2)

dk+2 . These give the

Hölder exponent r = 2(d+2)
d . By (2.14) and (2.12), we get

N
s
2
j ‖u j‖Lq

t,x
� N

− ε
2+

j ‖u j‖Xs,b , j = 1, 2 (2.19)

‖u j‖L p
t,x

� N−ε+
j ‖u j‖Xs,b , 3 ≤ j ≤ 2k + 1, (2.20)

‖v‖Lrt,x � N 0+‖v‖X0,1−b′ . (2.21)

By choosing δ, δ′ � ε in b := 1
2 − δ and in 1− b′ = 1

2 − δ′, respectively, we get

RHS of (2.18) � N− ε
4 ‖v‖X0,1−b′

2k+1∏
j=1

N
− ε

4
j ‖u j‖Xs,b . (2.22)

The factors N− ε
4 , N

− ε
4

j guarantee that we can perform (2.17).
Case 2: N1 � N2. Then, we necessarily have N1 ∼ N or else the left hand side of
(2.16) vanishes. By Hölder inequality,

Ns
∫
R×Td

u1u2 · · · u2k+1v dxdt � Ns
1‖u1‖Lq

t,x

2k+1∏
j=2

‖u j‖L p
t,x
‖v‖Lrt,x , (2.23)

with 2k
p + 1

q + 1
r = 1. As in Case 1, we would like to have p such that d

2 − d+2
p = scrit,

or equivalently p = k(d+2). However, the best we can do with the Strichartz estimate
for the remaining factors is to choose q = r = 2(d+2)

d , so that we have

Ns
1‖u1‖Lq

t,x
� N 0+

1 ‖u1‖Xs,b , (2.24)

‖u j‖L p
t,x

� N−ε+
j ‖u j‖Xs,b , 2 ≤ j ≤ 2k + 1, (2.25)

‖v‖Lrt,x � N 0+
1 ‖v‖X0,1−b′ . (2.26)

Notice that we can overcome the loss of derivative Ns
1 only up to a logarithmic factor.

We need a slightly refined analysis.
We cover the dyadic frequency annuli ofu1 and of vwith dyadic cubes of side-length

N2, i.e.

{ξ1 : |ξ1| ∼ N1} ⊂
⋃
�

Q� , {ξ : |ξ | ∼ N } ⊂
⋃
j

R j .

There are approximately
(
N1
N2

)d
-many cubes needed, and so

u1 =
∑

�

PQ�
u1 =:

∑
�

u1,� , v =
∑
j

PR j v =:
∑
j

v j
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are decompositions into finitely many terms. Since |ξ1 − ξ | � N2 for ξ1 ∈
supp(û1), ξ ∈ supp(̂v) on the convolution hyperplane, there exists a constant K such
that if dist(Q�, Q j ) > K N2, then the integral in (2.16) vanishes. Hence the summation
(2.17) is replaced by ∑

N1

∑
N2

N2�N1

· · ·
∑
N2k+1

N2k+1≤N2k

∑
�, j
j≈�

. (2.27)

Also, in place of (2.24)–(2.25), we now have

Ns
1‖u1,�‖Lq

t,x
� N 0+

2 ‖u1,�‖Xs,b , (2.28)

‖ui‖L p
t,x

� N−ε+
i ‖ui‖Xs,b , 2 ≤ i ≤ 2k + 1, (2.29)

‖v j‖Lq
t,x

� N 0+
2 ‖v j‖X0,1−b′ , (2.30)

Therefore, by Cauchy-Schwarz inequality and Plancherel identity,

LHS of (2.16) �
∑
N2

∑
N1

N1�N2

∑
�, j
�≈ j

N−ε+
2 ‖u1,�‖Xs,b‖v j‖X0,1−b′

2k+1∏
i=2

‖ui‖Xs,b

�
∑
N2

N−ε+
2

⎛
⎜⎜⎝ ∑

N1
N1�N2

∑
�

‖u1,�‖2Xs,b

⎞
⎟⎟⎠

1
2
⎛
⎜⎜⎝ ∑

N
N�N2

∑
j

‖v j‖2X0,1−b′

⎞
⎟⎟⎠

1
2
2k+1∏
i=2

‖ui‖Xs,b

�
∑
N2

N−ε+
2 ‖u1‖Xs,b‖v‖X0,1−b′

2k+1∏
i=2

‖ui‖Xs,b

�
2k+1∏
i=1

‖ui‖Xs,b‖v‖X0,1−b′

and the proof is complete. ��

3 The stochastic convolution

In this section, we prove some Xs,b-estimates on the stochastic convolution�(t) given
either by (1.11) or (1.12). We first record the following Burkholder-Davis-Gundy
inequality, which is a consequence of [28, Theorem 1.1].

Lemma 3.1 (Burkholder–Davis–Gundy inequality) Let H , K be separable Hilbert
spaces, T > 0, and W is an H-valued Wiener process on [0, T ]. Suppose that
{ψ(t)}t∈[0,T ] is an adapted process taking values in L2(H ; K ). Then for p ≥ 1,

E

[
sup

t∈[0,T ]

∥∥∥∥
∫ t

0
ψ(t ′) dW (t ′)

∥∥∥∥
p

K

]
�p E

⎡
⎣(∫ T

0

∥∥ψ(t ′)
∥∥2L2(H ;K )

dt ′
) p

2

⎤
⎦ .
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In addition, we prove that �(t) is pathwise continuous in both cases. To this end,
we employ the factorization method of Da Prato [13, Lemma 2.7], i.e. we make use
of the following lemma and (3.3) below.

Lemma 3.2 Let H be a Hilbert space, T > 0, α ∈ (0, 1), and σ >
( 1

α
,∞). Suppose

that f ∈ Lσ ([0, T ]; H). Then the function

F(t) :=
∫ t

0
S(t − t ′)(t − t ′)α−1 f (t ′) dt ′, t ∈ [0, T ] (3.1)

belongs to C([0, T ]; H). Moreover,

sup
t∈[0,T ]

‖F(t)‖H �σ,T ‖ f ‖Lσ ([0,T ];H) . (3.2)

We make use of the above lemma in conjunction with the following fact:

∫ t

μ

(t − t ′)α−1(t ′ − μ)−α dt ′ = π

sin(πα)
, (3.3)

for all 0 < α < 1 and all 0 ≤ μ < t . This can be seen via considerations with
Euler-Beta functions, see [13].

We now treat the additive and multiplicative cases separately below in Sects. 3.1
and 3.2 respectively. The arguments for the two cases are similar, albeit with some
extra technicalities in the multiplicative case.

3.1 The additive stochastic convolution

By Fourier expansion, the stochastic convolution (1.11) for the additive noise problem
can be written as

�(t) =
∑
n∈Zd

en
∑
j∈Zd

(̂φe j )(n)

∫ t

0
ei(t−t ′)|n|2dβ j (t

′) . (3.4)

We first prove the following Xs,b-estimate on �:

Lemma 3.3 Let s ≥ 0, 0 ≤ b < 1
2 , T > 0, and σ ∈ [2,∞). Assume that φ ∈

L2(L2(Td); Hs(Td)). Then for � given by (3.4) we have

E

[
‖�‖σ

Xs,b([0,T ])
]

� T
σ
2 (1+ T 2)

σ
2 ‖φ‖σ

L2(L2(Td );Hs (Td ))
. (3.5)

Proof Since 1[0,T ](t)1[0,T ](t ′) = 1[0,T ](t) = 1 whenever 0 ≤ t ′ ≤ t ≤ T , we have

1[0,T ](t)�(t)(x) =
∑
n∈Zd

en
∑
j∈Zd

φ̂e j (n)1[0,T ](t)eit |n|
2
∫ t

0
1[0,T ](t ′)e−i t ′|n|2dβ j (t

′)
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By (2.6), we have

‖�(t)‖Xs,b([0,T ]) ∼
∥∥1[0,T ](t)�(t)

∥∥
Xs,b

= ‖〈n〉s〈τ 〉bFt,x
(
S(−t)1[0,T ](t)�(t)

)
(τ, n)‖L2

τ �2n

=
∥∥∥〈n〉s〈τ 〉bFt

[
gn(t)

]
(τ )

∥∥∥
L2

τ �2n

, (3.6)

where

gn(t) :=
∑
j∈Zd

1[0,T ](t)
∫ t

0
1[0,T ](t ′)e−i t ′|n|2 φ̂e j (n)dβ j (t

′).

By the stochastic Fubini theorem (see [14, Theorem 4.33]), we have

Ft [gn(t)](τ ) =
∫
R

e−i tτ gn(t)dt

=
∑
j∈Zd

∫ ∞

−∞
1[0,T ](t ′)e−i t ′|n|2 φ̂e j (n)

∫ ∞

t ′
1[0,T ](t)e−i tτ dt dβ j (t

′).

Since ∣∣∣∣
∫ ∞

t ′
1[0,T ](t)e−i tτ dt

∣∣∣∣ � min{T , |τ |−1}, (3.7)

by Burkholder-Davis-Gundy inequality (Lemma 3.1), we get

E

[
|Ft [gn(t)](τ )|σ

]
�

⎡
⎣∫ T

0

∑
j∈Zd

∣∣∣∣φ̂e j (n)

∫ ∞

t ′
1[0,T ](t)e−i tτ dt

∣∣∣∣
2

dt ′
⎤
⎦

σ
2

�

⎡
⎣T ∑

j∈Zd

|φ̂e j (n)|2 min{T 2, |τ |−2}
⎤
⎦

σ
2

.

(3.8)

By (3.6), (3.8), and Minkowski inequality, we get

‖�‖Lσ (�;Xs,b([0,T ])) ≤
⎛
⎝∑

n∈Zd

∫ ∞

−∞
〈n〉2s〈τ 〉2b (E [|F[gn](τ )|σ ]) 2

σ dτ

⎞
⎠

1
2

� T
1
2

⎛
⎝ ∑

n, j∈Zd

〈n〉2s |φ̂e j (n)|2
∫ ∞

−∞
〈τ 〉2b min{T 2, |τ |−2} dτ

⎞
⎠

1
2

� T
1
2 ‖φ‖L2(L2;Hs )

(
T 2
∫
|τ |<1

dτ +
∫
|τ |≥1

〈τ 〉2b−2 dτ

) 1
2

.
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This completes the proof of Lemma 3.3. ��

We now prove that � has a continuous version taking values in Hs(Td). This is the
content of the next lemma.

Lemma 3.4 (Continuity of the additive noise) Let s ≥ 0, T > 0, and 2 ≤ σ < ∞.
Assume that φ ∈ L2(L2(Td); Hs(Td)). Then �(·) belongs to C([0, T ]; Hs(Td))

almost surely and

E

[
sup

t∈[0,T ]
‖�(t)‖σ

Hs (Td )

]
�T ‖φ‖σ

L2(L2(Td );Hs (Td ))
. (3.9)

Proof We fix α ∈ (0, 1
2

)
and we write the stochastic convolution as follows:

�(t) = sin(πα)

π

∫ t

0

[∫ t

μ

(t − t ′)α−1(t ′ − μ)−α dt ′
]
S(t − μ)φ dW (μ)

= sin(πα)

π

∫ t

0
S(t − t ′)(t − t ′)α−1

∫ t ′

0
S(t ′ − μ)(t ′ − μ)−αφ dW (μ) dt ′,

(3.10)

where we used the stochastic Fubini theorem [14, Theorem 4.33] and the group prop-
erty of S(·). By Lemma 3.2 and (3.10) it suffices to show that the process

f (t ′) :=
∫ t ′

0
S(t ′ − μ)(t ′ − μ)−αφ dW (μ)

satisfies

E

[ ∫ T

0

∥∥ f (t ′)∥∥σ

Hs
x
dt ′
]
≤ C

(
T , σ, ‖φ‖L2(L2;Hs )

)
< ∞, (3.11)

for some σ > 1
α
.

By Burkholder-Davis-Gundy inequality (Lemma 3.1), for any σ ≥ 2 and any
t ′ ∈ [0, T ], we get

E

[∥∥ f (t ′)∥∥σ

Hs
x

]
�
(∫ t ′

0
‖S(t ′ − μ)(t ′ − μ)−αφ‖2L2(L2;Hs )

dμ

) σ
2

=
⎛
⎝∫ t ′

0
(t ′ − μ)−2α

∑
j∈Zd

‖S(t ′ − μ)φe j‖2Hs dμ

⎞
⎠

σ
2

≤ ‖φ‖σ
L2(L2;Hs )

(
T 1−2α

1− 2α

) σ
2

,
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where in the last step we used 2α ∈ (0, 1) and the Hs(Td)-isometry property of
S(t ′ − μ). Hence

LHS of (3.11) =
∫ T

0
E

[∥∥ f (t ′)∥∥σ

Hs
x

]
dt ′ � ‖φ‖σ

L2(L2;Hs )
T

σ
2 (1−2α)+1 < ∞.

The estimate (3.9) follows from (3.2). ��

3.2 Themultiplicative stochastic convolution

The multiplicative stochastic convolution � = �[u] from (1.12) can be written as

�[u](t) =
∑
n∈Zd

en
∑
j∈Zd

∫ t

0
ei(t−t ′)|n|2 ̂(u(t ′)φe j )(n)dβ j (t

′). (3.12)

Recall that if s > d
2 , then we have access to the algebra property of Hs(Td):

‖ f g‖Hs (Td ) � ‖ f ‖Hs (Td ) ‖g‖Hs (Td ) (3.13)

which is an easy consequence of the Cauchy-Schwarz inequality. This simple fact
is useful for our analysis in the multiplicative case. On the other hand, (3.13) is not
available to us for regularities below d

2 , but we use the following inequalities.

Lemma 3.5 Let 0 < s ≤ d
2 and 1 ≤ r < d

d−s . Then

‖ f u‖Hs (Td ) � ‖ f ‖FLs,r (Td )‖u‖Hs (Td ). (3.14)

Also, for s = 0, we have

‖ f u‖L2(Td ) � ‖ f ‖FL0,1(Td )‖u‖L2(Td ). (3.15)

Proof Assume that 0 < s ≤ d
2 and let n1 and n2 denote the spatial frequencies of f

and u respectively. By separating the regions {|n1| � |n2|} and {|n1| � |n2|}, and
then applying Young’s inequality, we have

‖ f u‖Hs (Td ) �
∥∥∥(〈̂∇〉s f ∗ û)(n)

∥∥∥
�2n

+
∥∥∥( f̂ ∗ 〈̂∇〉su)(n)

∥∥∥
�2n

� ‖ f ‖FLs,r ‖û‖�p + ‖ f̂ ‖�1‖u‖Hs ,

where p is chosen such that 1
r + 1

p = 3
2 . By Hölder inequality, for r ′ and q such that

1
r + 1

r ′ = 1 and 1
q + 1

2 = 1
p ,

‖ f̂ ‖�1 � ‖〈n〉−s‖
�r

′ ‖ f ‖FLs,r ,

‖û‖�p � ‖〈n〉−s‖�q‖u‖Hs .
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Since sr ′ > d and sq > d provided that r < d
d−s , the conclusion (3.14) follows.

If s = 0, (3.15) follows easily from Young’s inequality:

‖ f u‖L2(Td ) = ‖ f̂ ∗ û‖�2 � ‖ f̂ ‖�1‖û‖�2 = ‖ f ‖FL0,1‖u‖L2 . ��
Given φ as in Theorem 1.6, let us denote

C(φ) := ‖φ‖L2(L2(Td );FLs,r (Td )) < ∞, (3.16)

for r = 2 when s > d
2 , for some r ∈ [

1, d
d−s

)
when 0 < s ≤ d

2 , and for r = 1
when s = 0. Recall that if φ is translation invariant, then it is sufficient to assume
that C(φ) < ∞ with r = 2, for all s ≥ 0. We now proceed to prove the following
Xs,b-estimate of �[u].
Lemma 3.6 Let s ≥ 0, 0 ≤ b < 1

2 , T > 0, and 2 ≤ σ < ∞. Suppose that φ satisfies
the assumptions of Theorem 1.6. Then, for �[u] given by (1.12) we have the estimate

E

[
‖�[u]‖σ

Xs,b([0,T ])
]

� (T 2 + 1)
σ
2 C(φ)σ E

[
‖u‖σ

L2([0,T ];Hs (Td ))

]
. (3.17)

Proof We first prove (3.17). Let g(t) := 1[0,T ](t)S(−t)�(t). By the stochastic Fubini
theorem [14, Theorem 4.33],

Ft,x (g)(τ, n) =
∫
R

e−i tτ1[0,T ](t)
∑
j∈Zd

∫ t

0
e−i t ′n2( ̂u(t ′)φe j )(n) dβ j (t

′) dt

=
∑
j∈Zd

∫ T

0

∫ ∞

t ′
1[0,T ](t)e−i tτ e−i t ′n2( ̂u(t ′)φe j )(n) dt dβ j (t

′).

Then by (2.6) and the assumption 0 ≤ b < 1
2 , the Burkholder-Davis-Gundy inequality

(Lemma 3.1), and (3.7), we have

LHS of (3.17)

∼ E

[∥∥∥〈n〉s〈τ 〉bF [g](n, τ )

∥∥∥σ
L2

τ �2n

]

� E

⎡
⎢⎣
⎛
⎝ ∑

j,n∈Zd

∫
R

∫ T

0
〈n〉2s〈τ 〉2b

∣∣∣∣
∫ ∞
t ′

1[0,T ](t)e−i tτ dt

∣∣∣∣2 ∣∣∣( ̂u(t ′)φe j )(n)

∣∣∣2 dt ′ dτ

⎞
⎠

σ
2
⎤
⎥⎦

� (T 2 + 1)
σ
2 E

⎡
⎢⎣
⎛
⎝∫ T

0

∑
j,n∈Zd

〈n〉2s
∣∣∣( ̂u(t ′)φe j )(n)

∣∣∣2 dt ′
⎞
⎠

σ
2
⎤
⎥⎦ .

If s > d
2 , we apply the algebra property of Hs(Td) to get

‖u(t ′)φe j‖�2j H
s � ‖φ‖L2(L2;Hs )‖u(t ′)‖Hs .
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If 0 ≤ s ≤ d
2 , we have

‖u(t ′)φe j‖�2j H
s � C(φ)‖u(t ′)‖Hs . (3.18)

and thus (3.17) follows. ��

Next, we prove the continuity of �[u](t) in the same way as in Lemma 3.4, i.e. by
using Lemma 3.2.

Lemma 3.7 (Continuity of the multiplicative noise) Let T > 0, s ≥ 0, 0 ≤ b < 1
2 , and

2 ≤ σ < ∞. Suppose that u ∈ Lσ
(
�; Xs,b([0, T ])) and that φ satisfies the assump-

tions of Theorem 1.6. Then �[u](·) given by (3.12) belongs to C([0, T ]; Hs(Td))

almost surely. Moreover,

E

[
sup

t∈[0,T ]
‖�[u](t)‖σ

Hs (Td )

]
� C(φ)σ E

[
‖u‖σ

Xs,b([0,T ])
]
. (3.19)

Proof Applying the same factorisation procedure as in the proof of Lemma 3.4 reduces
the problem to proving that the process

f (t ′) :=
∫ t ′

0
(t ′ − μ)−αS(t ′ − μ)

[
u(μ)φ

]
dW (μ)

satisfies

E

[∫ T

0

∥∥ f (t ′)∥∥σ

Hs
x
dt ′
]
≤ C ′ (T , σ,C(φ)) < ∞ (3.20)

for some 0 < α < 1 satisfying α > 1
σ
. By the Burkholder-Davis-Gundy inequality

(Lemma 3.1) and Lemma 3.5, we have

E

[∥∥ f (t ′)∥∥σ

Hs
x

]
� E

⎡
⎣(∫ t ′

0
‖(t ′ − μ)−αS(t ′ − μ)[u(μ)φ]‖2L2(L2;Hs )

dμ

) σ
2
⎤
⎦

= E

⎡
⎢⎣
⎛
⎝∫ t ′

0
(t ′ − μ)−2α

∑
j∈Zd

‖S(t ′ − μ)u(μ)φe j‖2Hs dμ

⎞
⎠

σ
2
⎤
⎥⎦

� E

⎡
⎢⎣
⎛
⎝∑

j∈Zd

‖φe j‖2FLs,r

∫ T

0
(t ′ − μ)−2α‖u(μ)‖2Hs dμ

⎞
⎠

σ
2
⎤
⎥⎦ .
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Then, by Fubini theorem and Minkowski inequality, we obtain

E

[∫ T

0

∥∥ f (t ′)∥∥σ

Hs
x
dt ′
]
=
∥∥∥ ‖ f ‖Hs

x

∥∥∥σ

Lσ (�;Lσ
t ′ [0,T ])

� C(φ)σ
∥∥∥∥ ∥∥∥(t ′ − μ)−α‖u(μ)‖Hs

x

∥∥∥
L2

μ(0,T ])

∥∥∥∥
σ

Lσ (�;Lσ
t ′ [0,T ])

≤ C(φ)σ E

[∥∥∥∥
∥∥∥(t ′ − μ)−α‖u(μ)‖Hs

x

∥∥∥
Lσ
t ′ (0,T ])

∥∥∥∥
σ

L2
μ([0,T ])

]

� C(φ)σ E

[(∫ T

0
(T − μ)2(

1
σ
−α)‖u(μ)‖2Hs

x
dμ

) σ
2
]

By Hölder and Sobolev inequalities and (2.6), we have

(∫ T

0
(T − μ)2(

1
σ
−α)‖u(μ)‖2Hs

x
dμ

) 1
2

≤
∥∥∥(T − μ)

1
σ
−α
∥∥∥
L

4
1+2b
μ ([0,T ])

∥∥∥‖u(μ)‖Hs
x

∥∥∥
L

4
1−2b
μ ([0,T ])

� T 1+ 4
1+2b ( 1

σ
−α)
∥∥∥1[0,T ](μ)‖S(−μ)u(μ)‖Hs

x

∥∥∥
L

4
1−2b
μ

.

There exists α = α(σ) := 1
σ
+ 1

4 for which we have

E

[∫ T

0

∥∥ f (t ′)∥∥σ

Hs
x
dt ′
]

� E

[
T

2bσ
1+2b ‖u‖σ

Xs,b([0,T ])
]

< ∞. ��

4 Local well-posedness

4.1 SNLS with additive noise

In this subsection, we prove Theorem 1.1. Let b = b(k) = 1
2− be given by Lemma

2.4 (in the case d = k = 1) or by Lemma 2.5 (in the case dk ≥ 2). By Lemma 3.3, for
any T > 0, there is an event �′ of full probability such that the stochastic convolution
� has finite Xs,b([0, T ])-norm on �′.

Now fix ω ∈ �′ and u0 ∈ Hs(Td). Consider the ball

BR := {
u ∈ Xs,b([0, T ]) : ‖u‖Xs,b([0,T ]) ≤ R

}
where 0 < T < 1 and R > 0 are to be determined later. We aim to show that the
operator � given by

�u(t) = S(t)u0 ± i
∫ t

0
S(t − t ′)

(|u|2ku)(t ′)dt ′ − i�(t) , t ≥ 0,
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where � is the additive stochastic convolution given by (3.4), is a contraction on BR .
To this end, it remains to estimate the Xs,b([0, T ])-norm of

D(u) :=
∫ t

0
S(t − t ′)

(|u|2ku)(t ′) dt ′.
For any δ > 0 sufficiently small (such that b + δ < 1

2 ), by Lemma 2.3 and (2.6):

‖D(u)‖Xs,b([0,T ]) � T δ ‖D(u)‖Xs,b+δ([0,T ]) � T δ
∥∥1[0,T ](t)D(u)(t)

∥∥
Xs, 12+δ

.

Let η be a smooth cut-off function, supported on [−1, T + 1], with η(t) = 1 for all

t ∈ [0, T ]. For any w ∈ Xs,− 1
2+δ that agrees with |u|2ku on [0, T ], by Lemma 2.2,

we obtain

∥∥1[0,T ](t)D(u)(t)
∥∥
Xs, 12+δ

�
∥∥∥∥η(t)

∫ t

0
S(t − t ′)w(t ′)dt ′

∥∥∥∥
Xs, 12+δ

� ‖w‖
Xs,− 1

2+δ

(4.1)

Then after taking the infimum over all such w, we use Lemma 2.4 or 2.5 and we get

‖D(u)‖Xs,b([0,T ]) � T δ‖(uu)ku‖
Xs,− 1

2+δ
([0,T ]) � T δ ‖u‖2k+1

Xs,b([0,T ]) . (4.2)

It follows that

‖�u‖Xs,b([0,T ]) ≤ c ‖u0‖Hs
x
+ cT δ ‖u‖2k+1

Xs,b([0,T ]) + ‖�(t)‖Xs,b([0,T ]) , (4.3)

for some c > 0. Similarly, we obtain

‖�u − �v‖Xs,b([0,T ]) ≤ cT δ
(
‖u‖2kXs,b([0,T ]) + ‖v‖2kXs,b([0,T ])

)
‖u − v‖Xs,b([0,T ]) .

(4.4)
Let R := 2c ‖u0‖Hs

x
+ 2 ‖�(t)‖Xs,b([0,T ]). From (4.3) and (4.4), we see that � is a

contraction from BR to BR provided

cT δR2k+1 ≤ 1

2
R and cT δ

(
2R2k

)
≤ 1

2
. (4.5)

This is always possible ifwe choose T � 1 sufficiently small. This shows the existence
of a unique solution u ∈ Xs,b([0, T ]) to (1.4) on �′.

Finally, we check that u ∈ C([0, T ]; Hs) on the set of full probability �′′ ∩ �′,
where �′′ is given by Lemma 3.4, that is � ∈ C([0, T ]; Hs) on �′′. By (2.6), (4.1)
and Lemma 2.4 or 2.5, we also get

‖D(u)‖
Xs, 12+δ

([0,T ]) �
∥∥1[0,T ](t)D(u)(t)

∥∥
Xs, 12+δ

� ‖u‖2k+1
Xs,b([0,T ]) . (4.6)

123



Stoch PDE: Anal Comp

By the embedding Xs, 12+δ([0, T ]) ↪→ C([0, T ]; Hs(Td)), we have D(u) ∈
C([0, T ]; Hs(Td)). Since the linear term S(t)u0 also belongs to C([0, T ]; Hs(Td)),
we conclude that

u = �u ∈ C
([0, T ]; Hs(Td)

)
on �′′ ∩ �′.

Remark 4.1 From (4.5), we obtain the time of existence

Tmax := max

{
T̃ > 0 : T̃ ≤ c

(
‖u0‖Hs + ‖�‖Xs,b([0,T̃ ])

)−θ
}
, (4.7)

where θ = 2k
δ
. Note that (4.7) will be useful in our global argument.

4.2 SNLS withmultiplicative noise

In this subsection, we prove Theorem 1.6. Following [17], we use a truncated version
of (1.4). The main idea is to apply an appropriate cut-off function on the nonlinearity
to obtain a family of truncated SNLS, and then prove global well-posedness of these
truncated equations. Since solutions started with the same initial data coincide up to
suitable stopping times, we obtain a solution to the original SNLS in the limit.

Let η : R → [0, 1] be a smooth cut-off function such that η ≡ 1 on [0, 1] and
η ≡ 0 outside [−1, 2]. Set ηR := η

( ·
R

)
and consider the equation

i∂t uR − �uR ± ηR
( ‖uR‖Xs,b([0,t])

)2k+1|uR |2kuR = uR · φξ, (4.8)

with initial data uR |t=0 = u0. Its mild formulation is uR = �RuR , where �R is given
by

�RuR := S(t)u0 ± i
∫ t

0
S(t − t ′)ηR

(
‖uR‖Xs,b([0,t ′])

)2k+1 |uR |2kuR(t ′) dt ′ − i�[uR](t).
(4.9)

The key ingredient for Theorem 1.6 is the following proposition.

Proposition 4.2 (Global well-posedness for (4.8)) Let s > scrit, s ≥ 0, and T , R > 0.
Suppose that φ is as in Theorem 1.6. Given u0 ∈ Hs(Td), there exists b = 1

2− and a
unique adapted process

uR ∈ L2
(
�;C([0, T ]; Hs(Td)

) ∩ Xs,b([0, T ])
)

solving (4.8) on [0, T ].
Before proving this result, we state and prove the following lemma.
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Lemma 4.3 (Boundedness of cut-off) Let s ≥ 0, b ∈ [0, 1
2 ), R > 0 and T > 0. There

exist constants C1,C2(R) > 0 such that

∥∥∥ηR (‖u‖Xs,b([0,t])
)
u(t)

∥∥∥
Xs,b([0,T ]) ≤ min

{
C1 ‖u‖Xs,b([0,T ]) ,C2(R)

}
; (4.10)∥∥∥ηR (‖u‖Xs,b([0,t])

)
u(t) − ηR

(
‖v‖Xs,b([0,t])

)
v(t)

∥∥∥
Xs,b([0,T ]) ≤ C2(R) ‖u − v‖Xs,b([0,T ]) .

(4.11)

Proof We first prove (4.10). Let w(t, n) = Fx [S(−t)u(t)](n), κR(t) = ηR(‖u‖Xs,b([0,t])
)
and

τR := inf
{
t ≥ 0 : ‖u‖Xs,b([0,t]) ≥ 2R

}
. (4.12)

Then κR(t) = 0 when t > τR . By (2.6) and (2.1),

‖κR(t)u(t)‖2Xs,b([0,T ]) ∼
∥∥1[0,T∧τR ]κR(t)u(t)

∥∥2
Xs,b ∼ ‖κR(t)u(t)‖2Xs,b([0,T∧τR ])

∼
∑
n∈Zd

〈n〉2s ‖κR(t)w(t, n)‖2Hb(0,T∧τR)
. (4.13)

We now estimate the Hb(0, T ∧ τR)-norm, for which we use the following character-
ization (see for example [34]):

‖ f ‖2Hb(a1,a2)
∼ ‖ f ‖2L2(a1,a2)

+
∫ a2

a1

∫ a2

a1

| f (x) − f (y)|2
|x − y|1+2b dx dy , 0 < b < 1.

(4.14)

For the inhomogeneous contribution (i.e. coming from the L2-norm above), we have

∑
n∈Zd

〈n〉2s ‖κR(t)w(t, n)‖2
L2
t (0,T∧τR)

≤ min
{
‖u‖2Xs,b([0,τR ]) , ‖u‖2Xs,b([0,T ])

}

≤ min
{
(2R)2 , ‖u‖2Xs,b([0,T ])

}
.

The remaining part of (4.13) needs a bit more work. Fix n ∈ Z
d , then

∫ T∧τR

0

∫ T∧τR

0

|κR(t)w(t, n) − κR(t ′)w(t ′, n)|2
|t − t ′|1+2b dt ′ dt

�
∫ T∧τR

0

∫ t

0

|κR(t)(w(t, n) − w(t ′, n))|2
|t − t ′|1+2b dt ′ dt

+
∫ T∧τR

0

∫ t

0

|(κR(t) − κR(t ′))w(t ′, n)|2
|t − t ′|1+2b dt ′ dt

=: I(n) + II(n).
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It is clear that

I(n) � min
{
‖w(n)‖2Hb((0,τR))

, ‖w(n)‖2Hb((0,T ))

}
,

and hence

∑
n∈Zd

I(n) � min
{
(2R)2 , ‖u‖2Xs,b([0,T ])

}
.

For II(n), the mean value theorem infers that

∣∣κR(t) − κR(t ′)
∣∣2 �

(‖u‖Xs,b([0,t]) − ‖u‖Xs,b([0,t ′])
)2

R2

(
sup
r∈R

η′(r)
)2

�
∥∥1[t ′,t]u∥∥2Xs,b

R2

� 1

R2

∑
n′∈Zd

〈n′〉2s‖w(·, n′)‖2Hb(t ′,t).

Again, we split ‖w(·, n′)‖2
Hb(t ′,t) using (4.14) into the inhomogeneous contribution

(the L2-norm squared part) and the homogeneous contribution (the second term of
(4.14)). We control here only the homogeneous contributions for II(n) as the inho-
mogeneous contributions are easier. The homogeneous part of II(n) is controlled
by

1

R2

∑
n′∈Zd

〈n′〉2s
∫ T∧τR

0

∫ t

0

∫ t

t ′

∫ λ

t ′
|w(t ′, n)|2
|t − t ′|1+2b

· |w(λ, n′) − w(λ′, n′)|2
|λ − λ′|1+2b

dλ′ dλ dt ′ dt

(4.15)

= 1

R2

∑
n′∈Zd

〈n′〉2s
∫ T∧τR

0

∫ λ

0

∫ λ′

0

(∫ T∧τR

λ

1

|t − t ′|1+2b
dt

)
|w(t ′, n)|2

× |w(λ, n′) − w(λ′, n′)|2
|λ − λ′|1+2b

dt ′ dλ′ dλ, (4.16)

where we used 0 ≤ t ′ ≤ λ′ ≤ λ ≤ t ≤ T ∧ τR to switch the integrals. Now, the
integral with respect to t is equal to |T ∧ τR − t ′|−2b − |λ− t ′|−2b, which is bounded
by

|T ∧ τR − t ′|−2b ≤ |λ′ − t ′|−2b.

Thus (4.16) is controlled by
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1

R2

∑
n′∈Zd

〈n′〉2s
∫ T∧τR

0

∫ λ

0

(∫ λ′

0
|λ′ − t ′|−2b|w(t ′, n)|2 dt ′

)

× |w(λ, n′) − w(λ′, n′)|2
|λ − λ′|1+2b dλ′ dλ. (4.17)

Since b ∈ [0, 1
2

)
, by Hardy’s inequality (see for example [35, Lemma A.2]) the t ′-

integral is� ‖w(·, n)‖2Hb(0,λ′) ≤ ‖w(·, n)‖2Hb(0,T∧τR)
. After multiplying by 〈n〉2s and

summing over n ∈ Z
d , we see that (4.17) is controlled by

1

R2

∑
n,n′∈Zd

〈n〉2s〈n′〉2s ‖w(·, n)‖2Hb(0,T∧τR)
‖w(·, n)‖2

Hb
λ (0,T∧τR)

� 1

R2
‖u‖2Xs,b([0,T∧τR ]) ‖u‖

2
Xs,b([0,T∧τR ])

≤ min
{
4 ‖u‖2Xs,b([0,T ]) , 16R2

}
.

We now prove (4.11). Let τ uR and τv
R be defined as in (4.12). Assume without loss

of generality that τ uR ≤ τv
R . We decompose

LHS of (4.11) �
∥∥(ηR

(‖u‖Xs,b([0,t])
)− ηR

(‖v‖Xs,b([0,t])
))

v(t)
∥∥
Xs,b([0,T ])

+ ∥∥ηR
(‖u‖Xs,b([0,t])

)
(u(t) − v(t))

∥∥
Xs,b([0,T ])

=: A + B.

By the mean value theorem,

A = ∥∥(ηR
(‖u‖Xs,b([0,t])

)− ηR
(‖v‖Xs,b([0,t])

))
v(t)

∥∥
Xs,b([0,T∧τv

R ])

� 1

R
‖v‖Xs,b([0,T∧τv

R ]) ‖u − v‖Xs,b([0,T ])
� ‖u − v‖Xs,b([0,T ]) .

For B, one runs through the same argument as for (4.10) but with w(t, n) replaced by
Fx
[
S(−t)

(
u(t) − v(t)

)]
(n), which yields

B � C(R) ‖u − v‖Xs,b([0,T ]) . ��

We now conclude the proof of Proposition 4.2.

Proof of Proposition 4.2 Let T , R > 0 and let ET := L2
ad

(
�; Xs,b([0, T ])) be the

space of adapted processes in L2
(
�; Xs,b([0, T ])). We solve the fixed point problem

(4.9) in ET . Arguing as in the additive case, and using Lemmata 4.3 and 3.6, we have
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‖�Ru‖ET
≤ C1 ‖u0‖Hs + C2(R)T δ + C3T

b ‖u‖ET
;

‖�Ru − �Rv‖ET
≤ C4(R)T δ ‖u − v‖ET

+ C5T
b ‖u − v‖ET

.

Therefore, �R is a contraction from ET to ET provided we choose T = T (R) suffi-
ciently small. Thus there exists a unique solutionuR ∈ ET .Note thatT does not depend
on ‖u0‖Hs , hence we may iterate this argument to extend uR(t) to all t ∈ [0,∞).

Finally, to see that uR ∈ FT := L2
(
�;C([0, T ]; Hs(Td))

)
, we first note that since

uR ∈ ET , Lemma 3.7 infers that �[uR] ∈ FT . Then, by similar argument as in the

end of Sect. 4.1, we have that D(uR) ∈ L2(�; Xs, 12+([0, T ])), where
D(uR)(t) :=

∫ t

0
S(t − t ′)

(|uR |2kuR
)
dt ′.

Since L2
(
�; Xs, 12+([0, T ])) ↪→ FT , we have D(uR) ∈ FT . Also, it is clear that

S(t)u0 ∈ FT . Hence uR ∈ FT . ��
Proof of Theorem 1.6 Let

τR := inf
{
t > 0 : ‖uR‖Xs,b([0,t]) ≥ R

}
. (4.18)

Then, ηR(‖uR‖Xs,b([0,t])) = 1 if and only if t ≤ τR . Hence uR is a solution of
(1.4) on [0, τR]. For any δ > 0, we have uR(t) = uR+δ(t) whenever t ∈ [0, τR].
Consequently, τR is increasing in R. Indeed, if τR > τR+δ for some R > 0 and some
δ > 0, then for t ∈ [τR+δ, τR], we have ηR+δ

( ‖uR+δ‖Xs,b([0,t])
)

< 1 which implies
that uR(t) �= uR+δ(t), a contradiction. Therefore,

τ ∗ := lim
R→∞ τR (4.19)

is a well-defined stopping time that is either positive or infinite almost surely. By
defining u(t) := uR(t) for each t ∈ [0, τR], we see that u is a solution of (1.4) on
[0, τ ∗) almost surely. ��

5 Global well-posedness

In this section, we prove Theorems 1.5 and 1.8. Recall that the mass and energy of a
solution u(t) of the defocusing SNLS (1.1) are given respectively by

M(u(t)) =
∫
Td

1

2
|u(t, x)|2 dx, (5.1)

E(u(t)) =
∫
Td

1

2
|∇u(t, x)|2 + 1

2(k + 1)
|u(t, x)|2(k+1)dx . (5.2)

It is well-known that these are conserved quantities for (smooth enough) solutions of
the deterministic NLS equation.
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For SNLS, we prove probabilistic a priori control as per Propositions 5.1 and 5.3
below. To this purpose, the idea is to compute the stochastic differentials of (5.1) and
(5.2) and use the stochastic equation for u. We work with the following frequency
truncated version of (1.1):{

i∂t uN − �uN ± P≤N |uN |2kuN = F(uN , φNdW N ),

uN |t=0 = P≤Nu0 =: uN
0

(5.3)

where P≤N is the Littlewood-Paley projection onto the frequency set {n ∈ Z
d : |n| ≤

N },

φN := P≤N ◦ φ and WN (t) :=
∑
|n|≤N

βn(t)en .

By repeating the arguments in Sect. 4, one obtains local well-posedness for (5.3)
with initial data P≤Nu0 at least with the same time of existence as for the untruncated
SNLS.

5.1 SNLS with additive noise

We treat the additive SNLS in this subsection. We first prove probabilistic a priori
bounds on (5.1) and (5.2) of a solution uN of the truncated equation.

Proposition 5.1 Let m ∈ N, T0 > 0, φ ∈ L2(L2(Td); L2(Td)), and F(u, φξ) = φξ .
Suppose that uN (t) is a solution to (5.3) for t ∈ [0, T ], for some stopping time
T ∈ [0, T0]. Then there exists a constant C1 = C1(m, M(u0), T0, ‖φ‖L2(L2;L2)) > 0
such that

E

[
sup

0≤t≤T
M(uN (t))m

]
≤ C1. (5.4)

Furthermore, if (5.3) is defocusing, there existsC2 = C2(m, E(u0), T0, ‖φ‖L2(L2;H1))

> 0 such that

E

[
sup

0≤t≤T
E(uN (t))m

]
≤ C2. (5.5)

The constants C1 and C2 are independent of N .

Proof By applying Itô’s Lemma, we have

M(uN (t))m = M(uN
0 )m

+ m Im

⎛
⎝∑

| j |≤N

∫ t

0
M(uN (t ′))m−1

∫
Td

uN (t ′)φNe j dx dβ j (t
′)

⎞
⎠
(5.6)
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+ m(m − 1)
∑
| j |≤N

∫ t

0
M(uN (t ′))m−2

∣∣∣∣
∫
Td

uN (t ′)φNe j dx

∣∣∣∣
2

dt ′.

(5.7)

+ m
∥∥∥φN

∥∥∥2L2(L2;L2)

∫ t

0
M(uN (t ′))m−1 dt ′, (5.8)

the last term being the Itô correction term. We first control (5.6). By Burkholder-
Davis-Gundy inequality (Lemma 3.1), Hölder and Young inequalities, we get

E

[
sup

t∈[0,T ]
(5.6)

]
�m E

⎡
⎢⎣
⎧⎨
⎩
∑
| j |≤N

∫ T

0
M(uN (t ′))2(m−1)‖uN (t ′)‖2L2‖φN e j‖2L2dt

′
⎫⎬
⎭

1
2
⎤
⎥⎦

� ‖φN‖L2(L2;L2) E

⎡
⎣{∫ T

0
M(uN (t))2m−1dt

} 1
2

⎤
⎦

� ‖φ‖L2(L2;L2)T
1
2 E

⎡
⎣{ sup

t∈[0,T ]
M(uN (t))m−1

} 1
2
{

sup
t∈[0,T ]

M(uN (t))m
} 1

2
⎤
⎦

� ‖φ‖L2(L2;L2)T
1
2
0

{
E

[
sup

t∈[0,T ]
M(uN (t))m−1

]} 1
2
{

E

[
sup

t∈[0,T ]
M(uN (t))m

]} 1
2

Hence by Young’s inequality, we infer that

E

[
sup

t∈[0,T ]
(5.6)

]
≤ Cm‖φ‖2L2(L2;L2)

T0 E

[
sup

t∈[0,T ]
M(uN (t))m−1

]

+ 1

2
E

[
sup

t∈[0,T ]
M(uN (t))m

]
.

In a straightforward way, we also have

E

[
sup

t∈[0,T ]
(5.7)

]
≤ m(m − 1)‖φ‖2L2(L2;L2)

T0 E

[
sup

t∈[0,T ]
M(uN (t))m−1

]
,

E

[
sup

t∈[0,T ]
(5.8)

]
≤ 2m‖φ‖2L2(L2;L2)

T0 E

[
sup

t∈[0,T ]
M(uN (t))m−1

]
.

Therefore, there is some Cm > 0 such that

E

[
sup

t∈[0,T ]
M(uN (t))m

]
≤ M(u0)

m + CmT0 E

[
sup

t∈[0,T ]
M(uN (t))m−1

]

+ 1

2
E

[
sup

t∈[0,T ]
M(uN (t))m

]
.

(5.9)
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We now wish to move the last term of (5.9) to the left-hand side. However, we do
not know a priori that the moments of supt∈[0,T ] M(uN (t)) are finite. To justify this,
we note that (5.9) holds with T replaced by TR , where

TR := sup
{
t ∈ [0, T ] : M(uN (t)) ≤ R

}
, R > 0.

Now the terms that would be appearing in (5.9) are finite and hence the formal manip-
ulation is justified. Note that TR → T almost surely as R → ∞ because u (and
hence uN ) belongs inC([0, T ]; Hs(Td)) almost surely. Hence by letting R → ∞ and
invoking the monotone convergence theorem, one finds

E

[
sup

t∈[0,T ]
M(uN (t))m

]
≤ 2M(u0)

m + 2CmT0 E

[
sup

t∈[0,T ]
M(uN (t))m−1

]
. (5.10)

Hence, by induction on m, we obtain

E

[
sup

t∈[0,T ]
M(uN (t))m

]
� 1, (5.11)

where we note that the implicit constant is independent of N .
We now turn to estimating the energy. Applying Itô’s Lemma again, we find that

E(uN (t))m equals

E(uN
0 )m (5.12)

+ m Im

⎛
⎝∑

| j |≤N

∫ t

0
E(uN (t ′))m−1

∫
Td

|uN |2kuNφNe j dx dβ j (t
′)

⎞
⎠ (5.13)

− m Im

⎛
⎝∑

| j |≤N

∫ t

0
E(uN (t ′))m−1

∫
Td

�uNφNe j dx dβ j (t
′)

⎞
⎠ (5.14)

+ (k + 1)m
∑
| j |≤N

∫ t

0
E(uN (t ′))m−1

∫
Td

|uN |2k |φNe j |2 dx dt ′ (5.15)

+ m
∥∥∥∇φN

∥∥∥2L2(L2;L2)

∫ t

0
E(uN (t ′))m−1 dt ′ (5.16)

+ m(m − 1)

2

∑
| j |≤N

∫ t

0
E(uN (t ′))m−2

∣∣∣∣
∫
Td

(
−�uN + |uN |2kuN

)
φe j dx

∣∣∣∣
2

dt ′.

(5.17)

We shall control here only the difficult term (5.13) as the other terms are
bounded by similar lines of argument. Firstly, by Burkholder-Davis-Gundy inequality
(Lemma 3.1), we deduce
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E

[
sup

t∈[0,T ]
(5.13)

]
≤ CmE

⎡
⎢⎣
⎧⎨
⎩
∑
| j |≤N

∫ T

0
E(uN (t ′))2(m−1)

∣∣∣∣
∫
Td

|uN |2kuNφN e j dx

∣∣∣∣
2

dt ′
⎫⎬
⎭

1
2
⎤
⎥⎦ .

Then, by duality and the (dual of the) Sobolev embedding H1(Td) ↪→ L2k+2(Td),
we have ∣∣∣∣

∫
Td

|uN |2kuNφNe j dx

∣∣∣∣ ≤ ∥∥∥|uN |2kuN
∥∥∥
H−1(Td )

‖φNe j‖H1(Td )

�
∥∥∥|uN |2kuN

∥∥∥
L

2k+2
2k+1 (Td )

‖φe j‖H1(Td )

� E(uN )
2k+1
2k+2 ‖φe j‖H1(Td ),

provided that 1+ 1
k ≥ d

2 . Therefore, by Hölder and Young inequalities, and similarly
to the control of (5.6), we have

E

[
sup

t∈[0,T ]
(5.13)

]
≤ Cm‖φ‖2L2(L2;H1)

T0E

[
sup

t∈[0,T ]
E(uN (t))m−1

]

+ 1

8
E

[
sup

t∈[0,T ]
E(uN (t))m− 1

2k+2

]

≤ C̃m‖φ‖2L2(L2;H1)
T0E

[
sup

t∈[0,T ]
E(uN (t))m−1

]

+ 1

8
E

[
sup

t∈[0,T ]
E(uN (t))m

]
,

where in the last step we used interpolation.
We also have

E

[
sup

t∈[0,T ]
(5.14)

]
≤ Cm ‖φ‖L2(L2;H1) E

[
sup

t∈[0,T ]
E(uN (t))m−1

]
+ 1

8
E

[
sup

t∈[0,T ]
E(uN (t))m

]

E

[
sup

t∈[0,T ]
(5.15)

]
≤ Cm ‖φ‖2L2(L2;H1)

+ 1

8
E

[
sup

t∈[0,T ]
E(uN )m

]

E

[
sup

t∈[0,T ]
(5.16)

]
≤ Cm‖φ‖2L2(L2;H1)

E

[
sup

t∈[0,T ]
E(uN (t))m−1

]
,

E

[
sup

t∈[0,T ]
(5.17)

]
≤ C ‖φ‖2L2(L2;H1)

+ E

[
sup

t∈[0,T ]
H(uN (t))m−1

]
+ 1

8
E

[
sup

t∈[0,T ]
H(uN (t))m

]
.

Gathering all the estimates, there exists Cm > 0 such that
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E

[
sup

t∈[0,T ]
E(uN (t))

]
≤ E(u0)

m + CmT0 E

[
sup

t∈[0,T ]
E(uN (t))m−1

]
+ 1

2
E

[
sup

t∈[0,T ]
E(uN (t))m

]
.

Similarly to passing from (5.9) to (5.10) and by induction on m, we deduce that

E

[
sup

t∈[0,T ]
E(uN (t))m

]
� 1, (5.18)

with constant independent of N . ��
We now argue that the probabilistic a priori bounds in fact hold for solutions of the
original SNLS.

Corollary 5.2 For u solution to (1.1) with (1.2), the estimates (5.4) and (5.5) hold with
u in place of uN under the same assumptions as Proposition 5.1.

Proof Let �N be the mild formulation of (5.3), more precisely,

�N (v) := S(t)uN
0 ± i

∫ t

0
S(t− t ′)P≤N

(
|v|2kv

)
(t ′) dt ′ − i

∫ t

0
S(t− t ′)φN dW N (t ′).

(5.19)
Then �N is a contraction on a ball in X1, 12−([0, T ]) and has a unique fixed point uN

that satisfies the bounds in Proposition 5.1. Hence it suffices to show that uN in fact
converges to u in FT := L2(�;C([0, T ]; Hs

x )) for s = 0, 1. We only show s = 1
since the proof of s = 0 is the same. To this end, we consider the mild formulations
of uN and u and show that each piece of uN converges to the corresponding piece in
u. Clearly, S(t)uN

0 → S(t)u0 in FT . For the noise, let �N (t) denote the stochastic
convolution in (5.19). Then

�(t) − �N (t) =
⎛
⎝ ∑

|n|>N

∑
j∈Zd

+
∑
|n|≤N

∑
| j |>N

⎞
⎠ en

∫ t

0
ei(t−t ′)|n|2 φ̂e j (n)dβ j (t

′)

=
∫ t

0
S(t − t ′)P>Nφ dW (t ′) +

∫ t

0
S(t − t ′)πN P≤Nφ dW (t ′),

where πN denotes the projection onto the linear span of the orthonormal vectors
{e j : | j | > N }. By Lemma 3.4, the above is controlled by

‖P>N ◦ φ‖2L2(L2;H1)
+ ∥∥πN P≤Nφ

∥∥2L2(L2;H1)
,

which tends to 0 as N → ∞ because both norms are tails of convergent series.
Finally we treat the nonlinear terms

Du(t) :=
∫ t

0
S(t − t ′)|u|2ku(t ′) dt ′ and D≤Nu(t) :=

∫ t

0
S(t − t ′)P≤N

(
|u|2ku

)
(t ′) dt ′.
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Wefirst fix a path forwhich localwell-posedness holds, and prove that Du−D≤Nu →
0 in X1, 12+. Firstly,

∥∥∥Du − D≤Nu
∥∥∥
X1, 12+([0,T ]) ≤

∥∥∥∥
∫ t

0
S(t − t ′)P≤N (|u|2ku − |uN |2kuN )(t ′) dt ′

∥∥∥∥
X1, 12+([0,T ])

+ ‖P>N Du‖
X1, 12+([0,T ])

By Lemmas 2.2, 2.4 and 2.5, we have

I �
(
‖u‖2k

X1, 12−([0,T ])
+
∥∥∥uN

∥∥∥2k
X1, 12−([0,T ])

)∥∥∥u − uN
∥∥∥
X1, 12−([0,T ]) (5.20)

II � ‖u‖2k+1

X1, 12−([0,T ])
(5.21)

In particular, (5.21) implies Du ∈ X1, 12+([0, T ]), and hence II → 0 as N → ∞. We
claim that I → 0 as N → ∞ as well. Indeed, �N and � are contractions with fixed
points uN and u respectively, hence

∥∥∥u − uN
∥∥∥
X1, 12−([0,T ]) ≤

∥∥∥�(u) − �N (u)

∥∥∥
X1, 12−([0,T ]) +

∥∥∥�N (u) − �N (uN )

∥∥∥
X1, 12−([0,T ])

≤
∥∥∥�(u) − �N (u)

∥∥∥
X1, 12−([0,T ]) +

1

2

∥∥∥u − uN
∥∥∥
X1, 12−([0,T ]) .

By rearranging, it suffices to show that the first term on the right-hand side above
tends to 0 as N → ∞. Now∥∥∥�(u) − �N (u)

∥∥∥
X1, 12−([0,T ]) ≤ ‖P>N S(t)u0‖

X1, 12−([0,T ])

+
∥∥∥∥P>N

∫ t

0
S(t − t ′)|u|2ku(t ′) dt ′

∥∥∥∥
X1, 12−([0,T ])

+
∥∥∥�>N

∥∥∥
X1, 12−([0,T ]) .

By similar arguments as above, all the terms on the right go to 0 as N → ∞. This

proves our claim. By the embedding X1, 12+([0, T ]) ⊂ C([0, T ]; H1(Td)), we have
that ∥∥∥Du − D≤Nu

∥∥∥
C([0,T ];H1)

→ 0 (5.22)

almost surely as N → ∞. By the dominated convergence theorem, we have Du −
D≤Nu → 0 in FT . This concludes our proof. ��
Finally, we conclude the proof of global well-posedness for the additive case.

Proof of Theorem 1.5 Let s ∈ {0, 1} be the regularity of u0 from Theorem 1.5. Let
ε > 0 and T > 0 be given. We claim that there exists an event �ε such that a solution
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u ∈ Xs,b([0, T ]) ∩ C([0, T ]; Hs(Td)) exists on [0, T ] in �ε and P(� \ �ε) < ε. If
this claim holds, then by setting

�∗ =
∞⋃
n=1

� 1
n
,

we have that P(�∗) = 1 and u exists on [0, T ], proving the theorem. Let δ ∈ (0, 1)
be a small quantity chosen later. We subdivide [0, T ] into M = ⌈ T

δ

⌉
subintervals

Ik = [(k − 1)δ, kδ]. Let

�0 =
M⋂
k=1

{
ω ∈ � :

∥∥∥∥
∫ t

(k−1)δ
S(t − t ′)φ dW (t ′)

∥∥∥∥
Xs,b(Ik )

≤ L

}
,

where L > 0 is some large quantity determined later. Now by Chebyshev’s inequality
and Lemma 3.3,

P(� \ �0) =
M∑
k=1

P

(∥∥∥∥
∫ t

(k−1)δ
S(t − t ′)φ dW (t ′)

∥∥∥∥
Xs,b(Ik )

> L

)

≤
M∑
k=1

1

L2 E

[∥∥∥∥
∫ t

(k−1)δ
S(t − t ′)φ dW (t ′)

∥∥∥∥
2

Xs,b(Ik )

]

�
M∑
k=1

δ(δ2 + 1)

L2
‖φ‖2L2(L2;L2)

≤ 2Mδ

L2
‖φ‖2L2(L2;L2)

� T

L2
‖φ‖2L2(L2;L2)

.

By choosing L = L(ε, T , φ) sufficiently large, we may therefore bound P(�c
0) above

by ε
2 . Now let

R = max {‖u0‖Hs , L} .

By local theory, there exists a unique solution u(t) to (1.1) with time of existence Tmax
given in (4.7). In particular, we note that for ω ∈ �0,

c
(
‖u0‖Hs + ‖�‖Xs,b

[0,δ]

)−θ ≥ c
(
R + L

)−θ ≥ c
(
2R
)−θ

, (5.23)

where c is as in (4.7). By choosing δ = δ(R) := c(2R)−θ , we see that u(t) exists for
t ∈ [0, δ] for all ω ∈ �0. Now define

�1 = {ω ∈ �0 : ‖u(δ)‖Hs ≤ R} .
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By the same argument, u(t) exists for t ∈ (δ, 2δ) for all ω ∈ �1. Iterating this
argument, we have a chain of events �0 ⊇ �1 ⊇ · · · ⊇ �M−1 where

�k = {ω ∈ �k−1 : ‖u(kδ)‖Hs ≤ R}

and u(t) exists for all t ∈ [0, (k+1)δ] on �k . Setting �ε := �M−1, u(t) exists on the
full interval [0, T ] on�ε. It remains to check that�\�ε remains small. By Corollary
5.2, we have

P(�ε) ≤ P(� \ �0) +
M−1∑
k=0

P(�c
k+1 ∩ �k)

≤ ε

2
+

M−1∑
k=0

P ({‖u((k + 1)δ)‖Hs > R} ∩ �k)

≤ ε

2
+

M−1∑
k=0

1

Rp
E
[
1�k ‖u((k + 1)δ)‖pHs

]

≤ ε

2
+ MC1

Rp

≤ ε

2
+ 2TC1(2R)θ

cR p
,

for any p ∈ N. We further enlarge R if necessary by setting

R = max

{
2TC1

c
+ 1, L, ‖u0‖Hs

}
,

and so we have that

P(�ε) ≤ ε

2
+ 2θ Rθ−p+1.

This is smaller than ε provided we choose p = p(ε, θ) > 0 sufficiently large. Thus
�ε satisfies our claim. ��

5.2 SNLS withmultiplicative noise

In order to globalize solutions of SNLS, for the multiplicative noise case, we need to
prove probabilistic control of the Xs,b-norm of the solutions of the truncated SNLS
uniformly in the truncation parameter (Lemma 5.4). This requires a priori bounds on
mass and energy of solutions.

From Sect. 4.2, we obtained a local solution of the multiplicative (1.1) with time
of existence

τ ∗ = lim
R→∞ τR .
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Under the hypotheses of Theorem 1.8, we shall prove global well-posedness by show-
ing that τ ∗ = ∞ almost surely.

Proposition 5.3 Let T0 > 0 and φ be as in Theorem 1.8. Suppose that u(t) is a
solution for (1.1) with F(u, φξ) = u · φξ on t ∈ [0, T ] for some stopping time
T ∈ [0, T0 ∧ τ ∗). Let C(φ) be as in (3.16). Then for any m ∈ N, there exists C1 =
C1(m, M(u0), T0,C(φ)) > 0 such that

E

[
sup

0≤t≤T
M(u(t))m

]
≤ C1. (5.24)

Furthermore, if (1.1) is defocusing, there exists C2 = C2(m, E(u0), T0,C(φ)) > 0
such that

E

[
sup

0≤t≤T
E(u(t))m

]
≤ C2. (5.25)

Proof We consider the frequency truncated equation (5.3) and apply Itô’s Lemma to
obtain

M(uN (t))m = M(uN
0 )m

+ m Im

⎛
⎝∑

| j |≤N

∫ t

0
M(uN (t ′))m−1

∫
Td

|uN (t ′)|2φNe j dx dβ j (t
′)

⎞
⎠

(5.26)

+ m(m − 1)
∑
| j |≤N

∫ t

0
M(uN (t ′))m−2

∣∣∣∣
∫
Td

|uN (t ′)|2φNe j dx

∣∣∣∣
2

dt ′

(5.27)

+ m(m − 1)
∑
| j |≤N

∫ t

0
M(uN (t ′))m−1

∫
Td

|u(t ′)φe j |2 dx dt ′. (5.28)

To bound (5.26), we use Burkholder-Davis-Gundy inequality (Lemma 3.1) and use a
similar argument as in the proof of Lemma 3.6 to get

E

[
sup

t∈[0,T ]
(5.26)

]
� E

⎡
⎣ ∑
| j |≤N

(∫ T

0
M(uN (t ′))2(m−1)

∣∣∣∣
∫
Td

|uN (t ′)φe j |2 dx
∣∣∣∣2 dt ′

) 1
2
⎤
⎦

≤ C(φ)2E

⎡
⎣(∫ T

0
M(uN (t ′))2m

) 1
2
⎤
⎦

≤ C(φ)2

(
E

[
sup

t∈[0,T ]
M(uN (t))m

]) 1
2
(

E

[∫ T

0
M(uN (t ′))m dt ′

]) 1
2
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Similarly, one obtains

E

[
sup

t∈[0,T ]
{(5.27) + (5.28)}

]
� C(φ)E

[∫ T

0
M(uN (t ′))m dt ′

]

Hence there is a constant C1 = C1(m, M(u0), T ,C(φ)) such that

E

[
sup

t∈[0,T ]
M(uN (t))m

]
≤ C1 + C1 E

[∫ T

0
M(uN (t ′))m dt ′

]

+ C(φ)2

(
E

[
sup

t∈[0,T ]
M(uN (t))m

]) 1
2 (

E

[∫ T

0
M(uN (t ′))m dt ′

]) 1
2

The left-hand side is bounded above by 3M, whereM is maximum of the three terms
of the right-hand side. In any of the three cases, we may conclude the proof via simple
rearrangement arguments and Gronwall’s inequality.

Turning to the energy, we use Itô’s Lemma and the defocusing equation to obtain
that E(uN (t))m equals

E(uN
0 )m (5.29)

+ m Im

⎛
⎝∑

| j |≤N

∫ t

0
E(uN (t ′))m−1

∫
Td

|uN |2(k+1)φNe j dx dβ j (t
′)

⎞
⎠ (5.30)

− m Im

⎛
⎝∑

| j |≤N

∫ t

0
E(uN (t ′))m−1

∫
Td

(�uN )uNφNe j dx dβ j (t
′)

⎞
⎠ (5.31)

+ m(k + 1)
∑
| j |≤N

∫ t

0
E(uN (t ′))m−1

∫
Td

|uN |2(k+1)|φNe j |2 dx dt ′ (5.32)

+ m
∑
| j |≤N

∫ t

0
E(uN (t ′))m−1

∫
Td

|∇(uNφNe j )(n)|2 dx dt ′ (5.33)

+ m(m − 1)

2

⎛
⎝∑

| j |≤N

∫ t

0
E(uN (t ′))m−2

∣∣∣∣
∫
Td

(
−uN�uN + |uN |2k+1

)
φNe j dx

∣∣∣∣
2

dt ′
⎞
⎠

(5.34)

For (5.30), we use Burkholder-Davis-Gundy inequality (Lemma 3.1) to get

E

[
sup

t∈[0,T ]
(5.30)

]
� E

⎡
⎢⎣
⎛
⎝∑

| j |≤N

∫ T

0
E(uN (t ′))2(m−1)

∣∣∣∣
∫
Td

|uN |2k+2φNe j dx

∣∣∣∣
2

dt ′
⎞
⎠

1
2
⎤
⎥⎦ .
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Now, with r as in Theorem 1.6,

∣∣∣∣
∫
Td

|uN |2k+2φNe j dx

∣∣∣∣
2

≤
∥∥∥uN

∥∥∥2(2k+2)

L2k+2
x

∥∥∥φNe j
∥∥∥2
L∞x

≤ E(u)2
∥∥∥φ̂Ne j

∥∥∥2
�1

� E(u)2‖φNe j‖2FLs,r ,

where the last step follows from Hölder inequality as in the proof of Lemma 3.5.
Therefore, by Hölder’s inequality and (3.16),

E

[
sup

t∈[0,T ]
(5.30)

]
� C(φ) E

⎡
⎣(∫ T

0
E((uN (t ′)))2m dt ′

) 1
2

⎤
⎦

≤ C(φ)

(
E

[
sup

t∈[0,T ]
E(uN (t))m

]) 1
2 (

E

[∫ T

0
E(uN (t ′))m dt ′

]) 1
2

.

Similarly, we bound the other terms as follows:

E

[
sup

t∈[0,T ]
(5.31)

]
� C(φ)

(
E

[
sup

t∈[0,T ]
E(uN (t))m

]) 1
2 (

E

[∫ T

0
E(uN (t ′))m dt ′

]) 1
2

E

[
sup

t∈[0,T ]
{(5.32) + (5.33) + (5.34)}

]
� C(φ)2E

[∫ T

0
E(uN (t ′))m dt ′

]

It follows that there is a constant C2 = C2(m, E(u0), T ,C(φ)) such that

E

[
sup

t∈[0,T ]
E(uN (t))m

]
≤ C2 + C2 E

[∫ T

0
E(uN (t ′))m dt ′

]

+ C2

(
E

[
sup

t∈[0,T ]
E(uN (t))m

]) 1
2 (

E

[∫ T

0
E(uN (t ′))m dt ′

]) 1
2

.

Arguing in the same way as for the mass of uN yields the estimate for the energy of
uN . This proves the proposition for uN in place of u. The proposition then follows by
letting N → ∞. ��
Wenowprove the following probabilistic a priori bound on the Xs,b-normof a solution.

Lemma 5.4 Let T , R > 0. Let uR be the unique solution of (4.8) on [0, T ]. There
exists C1 = C1(‖u0‖L2 , T ,C(φ)) such that

E
[‖uR‖X0,b([0,T∧τR ])

] ≤ C1.
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Moreover, if (4.8) is defocusing, there also exists C2 = C2(‖u0‖H1 , T ,C(φ)) such
that

E
[‖uR‖X1,b([0,T∧τR ])

] ≤ C2.

The constants C1 and C2 are independent of R.

Proof Let τ be a stopping time so that 0 < τ ≤ T ∧ τR . By a similar argument used
in local theory, we have

‖uR‖Xs,b([0,τ ]) ≤ C1 ‖uR(0)‖Hs + C2τ
δ ‖uR‖2k+1

Xs,b([0,τ ]) + ‖�‖Xs,b([0,τ ])
≤ C1 ‖uR‖C([T∧τR ];Hs ) + C2τ

δ ‖uR‖2k+1
Xs,b([0,τ ]) + ‖�‖Xs,b([0,T∧τR ]) .

(5.35)
Let K = C1 ‖uR‖C([T∧τR ];Hs ) + ‖�(t)‖Xs,b([0,T∧τR ]). We claim that if τ ∼ K− 2k

δ ,
then

‖uR‖Xs,b([0,τ ]) � K . (5.36)

To see this, we note that the polynomial

pτ (x) = C2τ
δx2k+1 − x + K (5.37)

has exactly one positive turning point at

x ′+ = (
(2k + 1)C2τ

δ
)− 1

2k

and that pτ (x ′+) < 0 if we choose τ = cK− 2k
δ . For this choice, we have pτ (0) =

K > 0 and hence pτ (x) > 0 for 0 ≤ x < x+ where x+ is the unique positive root
below x ′+. Now (5.35) is equivalent to pτ

( ‖uR‖Xs,b([0,τ ])
) ≥ 0. But since g( · ) :=

‖uR‖Xs,b([0, · ]) is continuous and g(0) = 0, we must have

g(τ ) < x ′+ ∼ τ−
δ
2k ∼ K ,

which proves (5.36). Iterating this argument, we find that

‖uR‖Xs,b([( j−1)τ, jτ ]) � ‖uR‖C([0,T∧τR ];Hs ) + ‖�(t)‖Xs,b([0,T∧τR ]) (5.38)

for all integer 1 ≤ j ≤ � T∧τR
τ

� =: M . Putting everything together, we have

‖uR‖Xs,b([0,T∧τR ]) ≤
M∑
j=1

‖uR‖Xs,b([( j−1)τ, jτ ])

� T ∧ τR

τ

(‖uR‖C([0,T∧τR ];Hs ) + ‖�‖Xs,b([0,T∧τR ])
)

� T
(‖uR‖C([0,T∧τR ];Hs ) + ‖�‖Xs,b([0,T∧τR ])

) 2k
δ
+1

.
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By Proposition 5.3 and Lemma 3.6, all moments of the last two terms above are finite.
This proves Lemma 5.4. ��

We can now conclude the proof of Theorem 1.8.

Proof of Theorem 1.8 Fix T > 0. Since τR is increasing in R,

P(τ ∗ < T ) = lim
R→∞P(τR < T ) = lim

R→∞P
(‖uR‖Xs,b([0,T∧τR ]) ≥ R

)
≤ lim

R→∞
1

R
E
[‖uR‖Xs,b([0,T∧τR ])

]
.

But then the right-hand side equals 0 by Lemma 5.4. It follows that τ ∗ = ∞ almost
surely. ��
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