51 research outputs found

    NASA/MSFC ground-based Doppler lidar nocturnal boundary layer experiment (Noblex)

    Get PDF
    During the summer of 1982, NASA/MSFC's ground-based CO2 Doppler Lidar Velocimeter (DLV) was deployed at the Denver Stapleton Airport as part of NASA's participation in the JAWS (Joint Airport Weather Studies) program. Configured to measure the radial wind component within a 10 km radius, the conically scanning lidar was used to examine the evolution of a nocturnal boundary layer under the conditions of cloud free skies and rolling terrain. A valley drainage flow was detected and a two dimension flow visualization constructed. The depth of the gravity current was -700 meters while the depth of the creek valley was -150 meters. This deep drainage flow was detectable for distances of 30 to 40 km from the exit region of the valley. Although the sample period (2000 to 2300 CST) was short and only one nocturnal boundary layer case examined, the usefulness of the DLV was demonstrated as well as the care that must be exercised in interpreting lidar data taken in a stable boundary layer in the vicinity of subtle terrain features

    Influence of coherent mesoscale structures on satellite-based Doppler lidar wind measurements

    Get PDF
    The influence of coherent mesoscale structures on satellite based Doppler lidar wind measurements was investigated. Range dependent weighting functions and the single shot SNR of scan angle are examined and a space shuttle lidar experiment which used a fixed beam and rotating shuttle is simulated

    Evaluation of 2 1-D cloud models for the analysis of VAS soundings

    Get PDF
    Evaluation of the satellite Visual Infrared Spin Scan Radiometer Atmospheric Sounder (VISSR) has begun to document several of its critical shortcomings as far as numerical cloud models are concerned: excessive smoothing of thermal inversions; imprecise measurement of boundary layer moisture; and tendency to exaggerate atmospheric stability. The sensitivity of 1-D cloud models to their required inputs is stressed with special attention to those parameters obtained from atmospheric soundings taken by the VAS or rawinsonde. In addition to performing model experiments using temperature and moisture profiles having the general characteristics of VAS soundings, standard input sensitivity tests were made and 1-D model performance was compared with observations and the results of a 2-D model experiment using AVE/VAS data (Atmospheric Variability Experiment). Although very encouraging, the results are not sufficient to make any specific conclusions. In general, the VAS soundings are likely to be inadequate to provide the cloud base (and subcloud layer) information needed for inputs to current cumulus models. Above cloud base, the tendency to exaggerate the stability of the atmosphere requires solution before meaningful model experiments are run

    Influence of coherent mesoscale structures on satellite-based Doppler lidar wind measurements

    Get PDF
    Efforts to develop display routines for overlaying gridded and nongridded data sets are discussed. The primary objective is to have the capability to review global patterns of winds and lidar samples; to zoom in on particular wind features or global areas; and to display contours of wind components and derived fields (e.g., divergence, vorticity, deformation, etc.). Current considerations in support of a polar orbiting shuttle lidar mission are discussed. Ground truth for a shuttle lidar experiment may be limited to fortuitous alignment of lidar wind profiles and scheduled rawinsonde profiles. Any improvement on this would require special rawinsonde launches and/or optimization of the shuttle orbit with global wind measurement networks

    Cloud scale influences on mesoscale precipitation patterns

    Get PDF
    A two dimensional time dependent finite difference grid cloud model is discussed. The model simulates atmospheric motions, potential temperature, water vapor, cloud liquid, cloud ice, rain and small hail. Lateral boundary conditions are open allowing flow in and out of the model domain. Various amounts of convergence were simulated to test the effects on cloud initiation and development. Soundings were run and results discussed

    Study and prototype of data system interactions for the Earth Observing System Data and Information System

    Get PDF
    A crucial part of the Earth Observing System (EOS) is its Data and Information System (EOSDIS). The success of EOS depends not only on its instruments and science studies, but also on its ability to help scientists integrate data sets of geophysical and biological measurements taken by various instruments and investigators. NASA contractors have completed Phase B studies of EOSDIS, in particular its architecture, functionality, and user interfacing. At this point in time, it may seem impossible to exercise the EOSDIS or any of its components since they do not exist; i.e., if the EOSDIS is accepted as a totally new system, distinct from any existing DIS. However, if EOSDIS is seen as evolving from existing data systems, then some limited prototyping studies can be conducted by using currently functioning systems. In support of both the EOSDIS Science Advisory Panel and the EOSDIS Project, a prototyping activity was carried out by a cross section of interdisciplinary scientists. That prototyping activity is summarized and some conclusions are drawn that can be used by NASA-Goddard to evaluate and modify the specifications soon to be released in an RFP to build EOSDIS

    LAWS simulation: Sampling strategies and wind computation algorithms

    Get PDF
    In general, work has continued on developing and evaluating algorithms designed to manage the Laser Atmospheric Wind Sounder (LAWS) lidar pulses and to compute the horizontal wind vectors from the line-of-sight (LOS) measurements. These efforts fall into three categories: Improvements to the shot management and multi-pair algorithms (SMA/MPA); observing system simulation experiments; and ground-based simulations of LAWS

    Design management: changing roles of the professions

    Get PDF
    This paper sets out to explore how recent changes in procurement in construction have affected the roles that professions play in the design process. It discusses how professions that traditionally took the role of design manager now find themselves participating within previously unforeseen contexts, working in multidisciplinary teams led by contractors and with changed responsibilities at the design stage. Supply chain members who were not previously involved during the early project phases are being engaged at the earliest phases of the project life cycle and even taking leadership roles while designers sometimes work as supply chain partners. A study of design in construction and other sectors shows that in dealing with design management issues it is critical to deepen appreciation for the unique characteristics of design and the design process. The paper argues that contractors and designers taking on design management roles in a dynamic industry seeking to explore best practice and innovative approaches to procurement and in the delivery of projects need to acquire new skills, management education and develop the necessary qualities

    Louis I. Kahn and Richard Kelly: collaborative design in creation of the luminous environment

    Get PDF
    As one of the most prominent architects of the twentieth century, Louis I. Kahn aspired to use natural light to shape his architecture. The lighting designer Richard Kelly, one of his close collaborators, had significant influence on modern architectural lighting design in the twentieth century. Kahn and Kelly designed the luminous environments in three art-gallery and museum buildings, The Yale University Art Gallery, the Kimbell Art Museum and the Yale Center for British Art. Collaboration between the architect and the lighting designer resulted in well-resolved lighting solutions. This research investigated the collaboration between Louis I. Kahn and Richard Kelly from both theoretical and pragmatic perspectives. In terms of the theoretical perspective, a detailed overview of their collaborative work is provided through literature review. In terms of the pragmatic perspective, the background of their cooperation and the technical details are presented. In addition, daylighting performance analysis of these three buildings through digital modelling was undertaken. This study found that the lighting design solutions produced together by Louis I. Kahn and Richard Kelly, especially the way of using daylight, have had significant impact on architectural space and the luminous environment. More importantly, this kind of collaborative working method could provide a useful reference and guidance for contemporary architecture and lighting design
    corecore