1,934 research outputs found

    Critical mass and the dependency of research quality on group size

    Full text link
    Academic research groups are treated as complex systems and their cooperative behaviour is analysed from a mathematical and statistical viewpoint. Contrary to the naive expectation that the quality of a research group is simply given by the mean calibre of its individual scientists, we show that intra-group interactions play a dominant role. Our model manifests phenomena akin to phase transitions which are brought about by these interactions, and which facilitate the quantification of the notion of critical mass for research groups. We present these critical masses for many academic areas. A consequence of our analysis is that overall research performance of a given discipline is improved by supporting medium-sized groups over large ones, while small groups must strive to achieve critical mass.Comment: 16 pages, 6 figures consisting of 16 panels. Presentation and reference list improved for version

    Molecular Aspects of Secretory Granule Exocytosis by Neurons and Endocrine Cells

    Get PDF
    Neuronal communication and endocrine signaling are fundamental for integrating the function of tissues and cells in the body. Hormones released by endocrine cells are transported to the target cells through the circulation. By contrast, transmitter release from neurons occurs at specialized intercellular junctions, the synapses. Nevertheless, the mechanisms by which signal molecules are synthesized, stored, and eventually secreted by neurons and endocrine cells are very similar. Neurons and endocrine cells have in common two different types of secretory organelles, indicating the presence of two distinct secretory pathways. The synaptic vesicles of neurons contain excitatory or inhibitory neurotransmitters, whereas the secretory granules (also referred to as dense core vesicles, because of their electron dense content) are filled with neuropeptides and amines. In endocrine cells, peptide hormones and amines predominate in secretory granules. The function and content of vesicles, which share antigens with synaptic vesicles, are unknown for most endocrine cells. However, in B cells of the pancreatic islet, these vesicles contain GABA, which may be involved in intrainsular signaling.' Exocytosis of both synaptic vesicles and secretory granules is controlled by cytoplasmic calcium. However, the precise mechanisms of the subsequent steps, such as docking of vesicles and fusion of their membranes with the plasma membrane, are still incompletely understood. This contribution summarizes recent observations that elucidate components in neurons and endocrine cells involved in exocytosis. Emphasis is put on the intracellular aspects of the release of secretory granules that recently have been analyzed in detail

    Statistics of first-passage times in disordered systems using backward master equations and their exact renormalization rules

    Full text link
    We consider the non-equilibrium dynamics of disordered systems as defined by a master equation involving transition rates between configurations (detailed balance is not assumed). To compute the important dynamical time scales in finite-size systems without simulating the actual time evolution which can be extremely slow, we propose to focus on first-passage times that satisfy 'backward master equations'. Upon the iterative elimination of configurations, we obtain the exact renormalization rules that can be followed numerically. To test this approach, we study the statistics of some first-passage times for two disordered models : (i) for the random walk in a two-dimensional self-affine random potential of Hurst exponent HH, we focus on the first exit time from a square of size L×LL \times L if one starts at the square center. (ii) for the dynamics of the ferromagnetic Sherrington-Kirkpatrick model of NN spins, we consider the first passage time tft_f to zero-magnetization when starting from a fully magnetized configuration. Besides the expected linear growth of the averaged barrier ln⁥tfˉ∌N\bar{\ln t_{f}} \sim N, we find that the rescaled distribution of the barrier (ln⁥tf)(\ln t_{f}) decays as e−uηe^{- u^{\eta}} for large uu with a tail exponent of order η≃1.72\eta \simeq 1.72. This value can be simply interpreted in terms of rare events if the sample-to-sample fluctuation exponent for the barrier is ψwidth=1/3\psi_{width}=1/3.Comment: 8 pages, 4 figure

    Drawing Boundaries

    Get PDF
    In “On Drawing Lines on a Map” (1995), I suggested that the different ways we have of drawing lines on maps open up a new perspective on ontology, resting on a distinction between two sorts of boundaries: fiat and bona fide. “Fiat” means, roughly: human-demarcation-induced. “Bona fide” means, again roughly: a boundary constituted by some real physical discontinuity. I presented a general typology of boundaries based on this opposition and showed how it generates a corresponding typology of the different sorts of objects which boundaries determine or demarcate. In this paper, I describe how the theory of fiat boundaries has evolved since 1995, how it has been applied in areas such as property law and political geography, and how it is being used in contemporary work in formal and applied ontology, especially within the framework of Basic Formal Ontology
    • 

    corecore