34 research outputs found

    Regge behavior saves string theory from causality violations

    Get PDF
    Higher-derivative corrections to the Einstein-Hilbert action are present in bosonic string theory leading to the potential causality violations recently pointed out by Camanho et al. [1]. We analyze in detail this question by considering high-energy string-brane collisions at impact parameters b ≤ l s (the string-length parameter) with l s ≫ R p (the characteristic scale of the D p -brane geometry). If we keep only the contribution of the massless states causality is violated for a set of initial states whose polarization is suitably chosen with respect to the impact parameter vector. Such violations are instead neatly avoided when the full structure of string theory — and in particular its Regge behavior — is taken into account

    The subleading eikonal in supergravity theories

    Get PDF
    In this paper we study the subleading contributions to eikonal scattering in (super)gravity theories with particular emphasis on the role of both elastic and inelastic scattering processes. For concreteness we focus on the scattering of various massless particles off a stack of Dpp-branes in type II supergravity in the limit of large impact parameter bb. We analyse the relevant field theory Feynman diagrams which naturally give rise to both elastic and inelastic processes. We show that in the case analysed the leading and subleading eikonal only depend on elastic processes, while inelastic processes are captured by a pre-factor multiplying the exponentiated leading and subleading eikonal phase. In addition to the traditional Feynman diagram computations mentioned above, we also present a novel method for computing the amplitudes contributing to the leading and subleading eikonal phases, which, in the large bb limit, only involves knowledge of the onshell three and four-point vertices. The two methods are shown to give the same results. Furthermore we derive these results in yet another way, by computing various one-point amplitudes which allow us to extract the classical solution of the gravitational back reaction of the target Dpp-branes. Finally we show how our expressions for the leading and subleading eikonal agree with the calculation of the metric and corresponding deflection angle for massless states moving along geodesics in the relevant curved geometry.Comment: 40 pages, 5 figure

    Microscopic unitary description of tidal excitations in high-energy string-brane collisions

    Get PDF
    The eikonal operator was originally introduced to describe the effect of tidal excitations on higher-genus elastic string amplitudes at high energy. In this paper we provide a precise interpretation for this operator through the explicit tree-level calculation of generic inelastic transitions between closed strings as they scatter off a stack of parallel Dp-branes. We perform this analysis both in the light-cone gauge, using the Green-Schwarz vertex, and in the covariant formalism, using the Reggeon vertex operator. We also present a detailed discussion of the high energy behaviour of the covariant string amplitudes, showing how to take into account the energy factors that enhance the contribution of the longitudinally polarized massive states in a simple way.Comment: 58 page

    D-branes with Lorentzian signature in the Nappi-Witten model

    Get PDF
    Lorentzian signature D-branes of all dimensions for the Nappi-Witten string are constructed. This is done by rewriting the gluing condition J+=FJJ_+=FJ_- for the model chiral currents on the brane as a well posed first order differential problem and by solving it for Lie algebra isometries FF other than Lie algebra automorphisms. By construction, these D-branes are not twined conjugacy classes. Metrically degenerate D-branes are also obtained.Comment: 22 page

    The limit of N=(2,2) superconformal minimal models

    Full text link
    The limit of families of two-dimensional conformal field theories has recently attracted attention in the context of AdS/CFT dualities. In our work we analyse the limit of N=(2,2) superconformal minimal models when the central charge approaches c=3. The limiting theory is a non-rational N=(2,2) superconformal theory, in which there is a continuum of chiral primary fields. We determine the spectrum of the theory, the three-point functions on the sphere, and the disc one-point functions.Comment: 37 pages, 3 figures; v2: minor corrections in section 5.3, version to be published in JHE

    Classical and Quantum Strings in compactified pp-waves and Godel type Universes

    Full text link
    We consider Neveu-Schwarz pp-waves with spacetime supersymmetry. Upon compactification of a spacelike direction, these backgrounds develop Closed Null Curves (CNCs) and Closed Timelike Curves (CTCs), and are U-dual to supersymmetric Godel type universes. We study classical and quantum strings in this background, with emphasis on the strings winding around the compact direction. We consider two types of strings: long strings stabilized by NS flux and rotating strings which are stabilized against collapse by angular momentum. Some of the latter strings wrap around CNCs and CTCs, and are thus a potential source of pathology. We analyze the partition function, and in particular discuss the effects of these string states. Although our results are not conclusive, the partition function seems to be dramatically altered due to the presence of CNCs and CTCs. We discuss some interpretations of our results, including a possible sign of unitary violation.Comment: 42 pages, LaTeX, 2 figure

    On stable higher spin states in Heterotic String Theories

    Full text link
    We study properties of 1/2 BPS Higher Spin states in heterotic compactifications with extended supersymmetry. We also analyze non BPS Higher Spin states and give explicit expressions for physical vertex operators of the first two massive levels. We then study on-shell tri-linear couplings of these Higher Spin states and confirm that BPS states with arbitrary spin cannot decay into lower spin states in perturbation theory. Finally, we consider scattering of vector bosons off higher spin BPS states and extract form factors and polarization effects in various limits.Comment: 38 page

    Causality violation, gravitational shockwaves and UV completion

    Get PDF
    The effective actions describing the low-energy dynamics of QFTs involving gravity generically exhibit causality violations. These may take the form of superluminal propagation or Shapiro time advances and allow the construction of "time machines", i.e. spacetimes admitting closed non-spacelike curves. Here, we discuss critically whether such causality violations may be used as a criterion to identify unphysical effective actions or whether, and how, causality problems may be resolved by embedding the action in a fundamental, UV complete QFT. We study in detail the case of photon scattering in an Aichelburg-Sexl gravitational shockwave background and calculate the phase shifts in QED for all energies, demonstrating their smooth interpolation from the causality-violating effective action values at low-energy to their manifestly causal high-energy limits. At low energies, these phase shifts may be interpreted as backwards-in-time coordinate jumps as the photon encounters the shock wavefront, and we illustrate how the resulting causality problems emerge and are resolved in a two-shockwave time machine scenario. The implications of our results for ultra-high (Planck) energy scattering, in which graviton exchange is modelled by the shockwave background, are highlighted.Comment: 42 pages, 15 figures, updated reference
    corecore