3,838 research outputs found

    The forested agricoltural landscape of Pisdan plain: the Coltano estate

    Get PDF
    The frequency and coverage of individuals of L. nobilis has reached values over time such as to induce the scientific community and local governments to establish in the northern sector, a nature reserve of about 9 ha called " Forest of laurels ", considered by some authors, one of the few wild and spontaneous stations of Laurus nobilis of peninsular and insular Ital

    Mechanical transients initiated by ramp stretch and release to P0 in frog muscle fibers

    Get PDF
    Single fibers from the tibialis muscle of Rana temporaria were subjected to ramp stretches during tetanic stimulation at a sarcomere length of ~2 \u3bcm. Immediately after the stretch, or after different time delays, the active fiber was released against a constant force equal to the isometric force (P0) exerted immediately before the stretch. Four phases were detected after release: 1) an elastic recoil of the fiber's undamped elements, 2) a transient rapid shortening, 3) a marked reduction in the velocity of shortening (often to 0), and 4) an apparently steady shortening (sometimes absent). Increasing the amplitude of the stretch from ~2 to 10% of the fiber rest length led to an increase in phase 2 shortening from ~5 to 10 nm per half-sarcomere. Phase 2 shortening increased further (up to 14 nm per half-sarcomere) if a time interval of 5-10 ms was left between the end of large ramp stretches and release to P0. After 50- to 100-ms time intervals, shortening occurred in two steps of ~5 nm per half-sarcomere each. These findings suggest that phase 2 is due to charging, during and after the stretch, of a damped element, which can then shorten against P0 in at least two steps of ~5 nm/half sarcomere each

    A Molecular Dynamics Study of Noncovalent Interactions between Rubber and Fullerenes

    Get PDF
    The percolation and networking of filler particles is an important issue in the field of rubber reinforcement, and much effort is given to clarify the true nature of the reinforcement mechanism and the viscoelastic behavior. The concentration of nanofillers also in the presence of large amounts of carbon black is a parameter that can influence the macroscopic rubber behavior. In this paper, noncovalent interactions between C60 fullerenes with poly-1,4-cis-isoprene (PI) either as such or modified are studied through atomistic simulations based on molecular mechanics (MM) and molecular dynamics (MD) methods. At first, the conformational properties of a single chain and of 12 PI chains in a periodic simulation box are studied. Afterwards, the conformational properties of a single PI chain polymer terminated with a -COOH group, and then a bulk system formed by chains of unmodified and some PI modified chains are considered. Then, the systems formed by adding fullerenes to these two different bulk systems are studied. Relatively small interaction energy between rubber and fullerenes being well dispersed in the sample is found. The simulations showed a preferential tendency of fullerenes to display self-aggregation, in the presence of even a small fraction of modified polymer chains

    Radiation and magnetic field effects on new semiconductor power devices for HL-LHC experiments

    Full text link
    The radiation hardness of commercial Silicon Carbide and Gallium Nitride power MOSFETs is presented in this paper, for Total Ionizing Dose effects and Single Event Effects, under gamma, neutrons, protons and heavy ions. Similar tests are discussed for commercial DC-DC converters, also tested in operation under magnetic field

    Glial cells involvement in spinal muscular atrophy: Could SMA be a neuroinflammatory disease?

    Get PDF
    Spinal muscular atrophy (SMA) is a severe, inherited disease characterized by the progressive degeneration and death of motor neurons of the anterior horns of the spinal cord, which results in muscular atrophy and weakness of variable severity. Its early-onset form is invariably fatal in early childhood, while milder forms lead to permanent disability, physical deformities and respiratory complications. Recently, two novel revolutionary therapies, antisense oligonucleotides and gene therapy, have been approved, and might prove successful in making long-term survival of these patients likely. In this perspective, a deep understanding of the pathogenic mechanisms and of their impact on the interactions between motor neurons and other cell types within the central nervous system (CNS) is crucial. Studies using SMA animal and cellular models have taught us that the survival and functionality of motor neurons is highly dependent on a whole range of other cell types, namely glial cells, which are responsible for a variety of different functions, such as neuronal trophic support, synaptic remodeling, and immune surveillance. Thus, it emerges that SMA is likely a non-cell autonomous, multifactorial disease in which the interaction of different cell types and disease mechanisms leads to motor neurons failure and loss. This review will introduce the different glial cell types in the CNS and provide an overview of the role of glial cells in motor neuron degeneration in SMA. Furthermore, we will discuss the relevance of these findings so far and the potential impact on the success of available therapies and on the development of novel ones

    HEXIT-SAT: a mission concept for X-ray grazing incidence telescopes from 0.5 to 70 keV

    Full text link
    While the energy density of the Cosmic X-ray Background (CXB) provides a statistical estimate of the super massive black hole (SMBH) growth and mass density in the Universe, the lack, so far, of focusing instrument in the 20-60 keV (where the CXB energy density peaks), frustrates our effort to obtain a comprehensive picture of the SMBH evolutionary properties. HEXIT-SAT (High Energy X-ray Imaging Telescope SATellite) is a mission concept capable of exploring the hard X-ray sky with focusing/imaging instrumentation, to obtain an unbiased census of accreting SMBH up to the redshifts where galaxy formation peaks, and on extremely wide luminosity ranges. This will represent a leap forward comparable to that achieved in the soft X-rays by the Einstein Observatory in the late 70'. In addition to accreting SMBH, and very much like the Einstein Observatory, this mission would also have the capabilities of investigating almost any type of the celestial X-ray sources. HEXIT-SAT is based on high throughput (>400 cm2 @ 30 keV; >1200 cm2 @ 1 keV), high quality (15 arcsec Half Power Diameter) multi-layer optics, coupled with focal plane detectors with high efficiency in the full 0.5-70keV range. Building on the BeppoSAX experience, a low-Earth, equatorial orbit, will assure a low and stable particle background, and thus an extremely good sensitivity for faint hard X-ray sources. At the flux limits of 1/10 microCrab (10-30 keV) and 1/3 microCrab (20-40 keV) (reachable in one Msec observation) we should detect ~100 and ~40 sources in the 15 arcmin FWHM Field of View respectively, thus resolving >80% and ~65% of the CXB where its energy density peaks.Comment: to appear in Proceeedings of SPIE Vol. 5488, UV to Gamma Ray Space Telescope System

    Simbol-X Hard X-ray Focusing Mirrors: Results Obtained During the Phase A Study

    Full text link
    Simbol-X will push grazing incidence imaging up to 80 keV, providing a strong improvement both in sensitivity and angular resolution compared to all instruments that have operated so far above 10 keV. The superb hard X-ray imaging capability will be guaranteed by a mirror module of 100 electroformed Nickel shells with a multilayer reflecting coating. Here we will describe the technogical development and solutions adopted for the fabrication of the mirror module, that must guarantee an Half Energy Width (HEW) better than 20 arcsec from 0.5 up to 30 keV and a goal of 40 arcsec at 60 keV. During the phase A, terminated at the end of 2008, we have developed three engineering models with two, two and three shells, respectively. The most critical aspects in the development of the Simbol-X mirrors are i) the production of the 100 mandrels with very good surface quality within the timeline of the mission; ii) the replication of shells that must be very thin (a factor of 2 thinner than those of XMM-Newton) and still have very good image quality up to 80 keV; iii) the development of an integration process that allows us to integrate these very thin mirrors maintaining their intrinsic good image quality. The Phase A study has shown that we can fabricate the mandrels with the needed quality and that we have developed a valid integration process. The shells that we have produced so far have a quite good image quality, e.g. HEW <~30 arcsec at 30 keV, and effective area. However, we still need to make some improvements to reach the requirements. We will briefly present these results and discuss the possible improvements that we will investigate during phase B.Comment: 6 pages, 3 figures, invited talk at the conference "2nd International Simbol-X Symposium", Paris, 2-5 december, 200
    • 

    corecore