1,363 research outputs found

    Topological defects in flat nanomagnets: the magnetostatic limit

    Get PDF
    We discuss elementary topological defects in soft magnetic nanoparticles in the thin-film geometry. In the limit dominated by magnetostatic forces the low-energy defects are vortices (winding number n = +1), cross ties (n = -1), and edge defects with n = -1/2. We obtain topological constraints on the possible composition of domain walls. The simplest domain wall in this regime is composed of two -1/2 edge defects and a vortex, in accordance with observations and numerics.Comment: 3 pages, eps figures. Proceedings of MMM 0

    The structure of Gelfand-Levitan-Marchenko type equations for Delsarte transmutation operators of linear multi-dimensional differential operators and operator pencils. Part 1

    Full text link
    An analog of Gelfand-Levitan-Marchenko integral equations for multi- dimensional Delsarte transmutation operators is constructed by means of studying their differential-geometric structure based on the classical Lagrange identity for a formally conjugated pair of differential operators. An extension of the method for the case of affine pencils of differential operators is suggested.Comment: 12 page

    Broken parity and a chiral ground state in the frustrated magnet CdCr2O4

    Get PDF
    We present a model describing the lattice distortion and incommensurate magnetic order in the spinel CdCr2O4, a good realization of the Heisenberg "pyrochlore" antiferromagnet. The magnetic frustration is relieved through the spin-Peierls distortion of the lattice involving a phonon doublet with odd parity. The distortion stablizes a collinear magnetic order with the propagation wavevector q=2\pi(0,0,1). The lack of inversion symmetry makes the crystal structure chiral. The handedness is transferred to magnetic order by the relativistic spin-orbit coupling: the collinear state is twisted into a long spiral with the spins in the ac plane and q shifted to 2\pi(0,\delta,1).Comment: Incremental changes in response to referee report

    Extension of the Poincar\'e Group and Non-Abelian Tensor Gauge Fields

    Full text link
    In the recently proposed generalization of the Yang-Mills theory the group of gauge transformation gets essentially enlarged. This enlargement involves an elegant mixture of the internal and space-time symmetries. The resulting group is an extension of the Poincar\'e group with infinitely many generators which carry internal and space-time indices. This is similar to the super-symmetric extension of the Poincar\'e group, where instead of an anti-commuting spinor variable one should introduce a new vector variable. The construction of irreducible representations of the extended Poincar\'e algebra identifies a vector variable with the derivative of the Pauli-Lubanski vector over its length. As a result of this identification the generators of the gauge group have nonzero components only in the plane transversal to the momentum and are projecting out non-Abelian tensor gauge fields into the transversal plane, keeping only their positively definite space-like components.Comment: 21 page

    Carrier dynamics and coherent acoustic phonons in nitride heterostructures

    Full text link
    We model generation and propagation of coherent acoustic phonons in piezoelectric InGaN/GaN multi-quantum wells embedded in a \textit{pin} diode structure and compute the time resolved reflectivity signal in simulated pump-probe experiments. Carriers are created in the InGaN wells by ultrafast pumping below the GaN band gap and the dynamics of the photoexcited carriers is treated in a Boltzmann equation framework. Coherent acoustic phonons are generated in the quantum well via both deformation potential electron-phonon and piezoelectric electron-phonon interaction with photogenerated carriers, with the latter mechanism being the dominant one. Coherent longitudinal acoustic phonons propagate into the structure at the sound speed modifying the optical properties and giving rise to a giant oscillatory differential reflectivity signal. We demonstrate that coherent optical control of the differential reflectivity can be achieved using a delayed control pulse.Comment: 14 pages, 11 figure
    corecore