We model generation and propagation of coherent acoustic phonons in
piezoelectric InGaN/GaN multi-quantum wells embedded in a \textit{pin} diode
structure and compute the time resolved reflectivity signal in simulated
pump-probe experiments. Carriers are created in the InGaN wells by ultrafast
pumping below the GaN band gap and the dynamics of the photoexcited carriers is
treated in a Boltzmann equation framework. Coherent acoustic phonons are
generated in the quantum well via both deformation potential electron-phonon
and piezoelectric electron-phonon interaction with photogenerated carriers,
with the latter mechanism being the dominant one. Coherent longitudinal
acoustic phonons propagate into the structure at the sound speed modifying the
optical properties and giving rise to a giant oscillatory differential
reflectivity signal. We demonstrate that coherent optical control of the
differential reflectivity can be achieved using a delayed control pulse.Comment: 14 pages, 11 figure