255 research outputs found

    L-3,4-dihydroxyphenylalanine-induced hypersensitivity simulating features of denervation.

    Full text link
    The manner in which dyskinesia and intermittency of neurological control had emerged late in the therapy of Parkinsonism with L-3,4-dihydroxyphenylalanine (levodopa) had suggested to us that this drug can imprint on the brain a chemical memory of its passage. The majority of authors ascribed these events to denervation hypersensitivity caused by the nigral and other lesions of the disease. By feeding levodopa to mice, however, we induced a state that simulated denervations hypersensitivity, including hyperreaction to single injections of levodopa and increased dopamine-stimulated adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] activity in homogenates of caudate nuclei. These phenomena were not caused by actual denervation, because the hypersensitivity declined and disappeared some weeks after the dietary levodopa was stopped

    The risk factors for unexplained antepartum stillbirths in Scotland, 1994 to 2003

    Get PDF
    Objective: To determine the factors contributing to unexplained antepartum stillbirth in Scotland. Study Design: A 10-year birth database in Scotland was used to compare the unexplained antepartum stillbirth with other birth outcomes. The sample unit was a pregnant mother with a gestational age of 20 weeks and above and with a fetal birth weight of 200 g and above. Result: Maternal age of 35 years and above, lower deprivation category, inaccessible area of residence, maternal smoking, maternal height of <160 cm and gestational age of above 39 weeks were significantly associated with unexplained antepartum stillbirth. In multivariable analysis only maternal age (adjusted odds ratio (OR): 1.8, confidence interval (CI): 1.1 to 3.0, P=0.02), smoking during pregnancy (adjusted OR: 2.0, CI: 1.1 to 3.5, P=0.02), and maternal height (adjusted OR: 1.4, CI: 1.1 to 1.8, P=0.01), remain significant. Screening of pregnancies based on these three risk factors had 4.2% sensitivity and 99.4% specificity. The prevalence of stillbirth for this population was 0.2%. A positive predictive value of only 1.2% implies that only 1 in 83 women with these three risk factors will have antepartum stillbirth. The remaining 82 will suffer needless anxiety and potentially diagnostic procedures. Conclusion: Advanced maternal age, maternal smoking, and shorter maternal height were associated risk for unexplained antepartum stillbirth but screening based on these factors would be of limited value

    Neuroanatomical Study of the A11 Diencephalospinal Pathway in the Non-Human Primate

    Get PDF
    BACKGROUND: The A11 diencephalospinal pathway is crucial for sensorimotor integration and pain control at the spinal cord level. When disrupted, it is thought to be involved in numerous painful conditions such as restless legs syndrome and migraine. Its anatomical organization, however, remains largely unknown in the non-human primate (NHP). We therefore characterized the anatomy of this pathway in the NHP. METHODS AND FINDINGS: In situ hybridization of spinal dopamine receptors showed that D1 receptor mRNA is absent while D2 and D5 receptor mRNAs are mainly expressed in the dorsal horn and D3 receptor mRNA in both the dorsal and ventral horns. Unilateral injections of the retrograde tracer Fluoro-Gold (FG) into the cervical spinal enlargement labeled A11 hypothalamic neurons quasi-exclusively among dopamine areas. Detailed immunohistochemical analysis suggested that these FG-labeled A11 neurons are tyrosine hydroxylase-positive but dopa-decarboxylase and dopamine transporter-negative, suggestive of a L-DOPAergic nucleus. Stereological cell count of A11 neurons revealed that this group is composed by 4002±501 neurons per side. A 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) intoxication with subsequent development of a parkinsonian syndrome produced a 50% neuronal cell loss in the A11 group. CONCLUSION: The diencephalic A11 area could be the major source of L-DOPA in the NHP spinal cord, where it may play a role in the modulation of sensorimotor integration through D2 and D3 receptors either directly or indirectly via dopamine formation in spinal dopa-decarboxylase-positives cells

    Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease

    Get PDF
    Progressive loss of the ascending dopaminergic projection in the basal ganglia is a fundamental pathological feature of Parkinson's disease. Studies in animals and humans have identified spatially segregated functional territories in the basal ganglia for the control of goal-directed and habitual actions. In patients with Parkinson's disease the loss of dopamine is predominantly in the posterior putamen, a region of the basal ganglia associated with the control of habitual behaviour. These patients may therefore be forced into a progressive reliance on the goal-directed mode of action control that is mediated by comparatively preserved processing in the rostromedial striatum. Thus, many of their behavioural difficulties may reflect a loss of normal automatic control owing to distorting output signals from habitual control circuits, which impede the expression of goal-directed action. © 2010 Macmillan Publishers Limited. All rights reserved
    corecore