11 research outputs found

    Knee Joint Strength Ratios and Effects of Hip Position in Rugby Players

    Get PDF
    Measures of knee joint function, although useful in predicting injury, can be misleading because hip position in traditional seated isokinetic tests is dissimilar to when injuries occur. This study aimed to determine the differences between seated and supine peak torques and strength ratios and examine the interaction of position with joint velocity. This was a cross-sectional, repeated measures study. Isokinetic knee extensor and flexor concentric and eccentric peak torque was measured seated and supine (10 degrees hip flexion) at 1.04 and 3.14 rad.s(-1) in 11 Rugby players. Repeated measures analysis of variance and paired t-tests were used to analyze peak torques and strength ratios. Bonferroni post hoc, limits of agreement, and Pearson's correlation were applied. Seated peak torque was typically greater than that for supine for muscle actions and velocities. The values ranged from 109 +/- 18 N.m (mean +/- sigma) for supine hamstring concentric peak torque at 1.04 rad.s(-1) to 330 +/- 71 for seated quadriceps eccentric peak torque at 1.04 rad.s(-1). There was a significant position x muscle action interaction; eccentric peak torque was reduced more than concentric in the supine position. Knee joint strength ratios ranged from 0.47 +/- 0.06 to 0.86 +/- 0.23, with a significant difference in means between supine and seated positions for functional ratio at 3.14 rad.s(-1) observed; for seated it was 0.86 +/- 0.23; and for supine, it was 0.68 +/- 0.15 (p < 0.05). Limits of agreement for traditional and functional ratios ranged from 1.09 x/divided by 1.37 to 1.13 x/divided by 1.51. We conclude that hip angle affects isokinetic peak torques and knee joint strength ratios. Therefore, the hip angle should be nearer 10 degrees when measuring knee joint function because this is more ecologically valid. Using similar protocols, sports practitioners can screen for injury and affect training to minimize injury

    Contributors to negative biopsychosocial health or performance outcomes in rugby players (CoNBO): a systematic review and Delphi study protocol.

    Get PDF
    The importance of contributors that can result in negative player outcomes in sport and the feasibility and barriers to modifying these to optimise player health and well-being have yet to be established. Within rugby codes (rugby league, rugby union and rugby sevens), within male and female cohorts across playing levels (full-time senior, part-time senior, age grade), this project aims to develop a consensus on contributors to negative biopsychosocial outcomes in rugby players (known as the CoNBO study) and establish stakeholder perceived importance of the identified contributors and barriers to their management. This project will consist of three parts; part 1: a systematic review, part 2: a three-round expert Delphi study and part 3: stakeholder rating of feasibility and barriers to management. Within part 1, systematic searches of electronic databases (PubMed, Scopus, MEDLINE, SPORTDiscus, CINAHL) will be performed. The systematic review protocol is registered with PROSPERO. Studies will be searched to identify physical, psychological and/or social factors resulting in negative player outcomes in rugby. Part 2 will consist of a three-round expert Delphi consensus study to establish additional physical, psychological and/or social factors that result in negative player outcomes in rugby and their importance. In part 3, stakeholders (eg, coaches, chief executive officers and players) will provide perceptions of the feasibility and barriers to modifying the identified factors within their setting. On completion, several manuscripts will be submitted for publication in peer-reviewed journals. The findings of this project have worldwide relevance for stakeholders in the rugby codes. PROSPERO registration number CRD42022346751

    Knee Joint Strength Ratios and Effects of Hip Position in Rugby Players

    No full text
    Measures of knee joint function, although useful in predicting injury, can be misleading because hip position in traditional seated isokinetic tests is dissimilar to when injuries occur. This study aimed to determine the differences between seated and supine peak torques and strength ratios and examine the interaction of position with joint velocity. This was a cross-sectional, repeated measures study. Isokinetic knee extensor and flexor concentric and eccentric peak torque was measured seated and supine (10° hip flexion) at 1.04 and 3.14 rad·s−1 in 11 Rugby players. Repeated measures analysis of variance and paired t-tests were used to analyze peak torques and strength ratios. Bonferroni post hoc, limits of agreement, and Pearson's correlation were applied. Seated peak torque was typically greater than that for supine for muscle actions and velocities. The values ranged from 109 ± 18 N·m (mean ± σ) for supine hamstring concentric peak torque at 1.04 rad·s−1 to 330 ± 71 for seated quadriceps eccentric peak torque at 1.04 rad·s−1. There was a significant position × muscle action interaction; eccentric peak torque was reduced more than concentric in the supine position. Knee joint strength ratios ranged from 0.47 ± 0.06 to 0.86 ± 0.23, with a significant difference in means between supine and seated positions for functional ratio at 3.14 rad·s−1 observed; for seated it was 0.86 ± 0.23; and for supine, it was 0.68 ± 0.15 (
    corecore