847 research outputs found

    Tau anomalous magnetic moment form factor at Super B/Flavor factories

    Get PDF
    The proposed high-luminosity B/Flavor factories offer new opportunities for the improved determination of the fundamental physical parameters of standard heavy leptons. Compared to the electron or the muon case, the magnetic properties of the τ\tau lepton are largely unexplored. We show that the electromagnetic properties of the τ\tau, and in particular its magnetic form factor, may be measured competitively in these facilities, using unpolarized or polarized electron beams. Various observables of the τ\tau's produced on top of the Υ\Upsilon resonances, such as cross-section and normal polarization for unpolarized electrons or longitudinal and transverse asymmetries for polarized beams, can be combined in order to increase the sensitivity on the magnetic moment form factor. In the case of polarized electrons, we identify a special combination of transverse and longitudinal τ\tau polarizations able to disentangle this anomalous magnetic form factor from both the charge form factor and the interference with the Z-mediating amplitude. For an integrated luminosity of 15×1018b115 \times 10^{18} b^{-1} one could achieve a sensitivity of about 10610^{-6}, which is several orders of magnitude below any other existing high- or low-energy bound on the magnetic moment. Thus one may obtain a QED test of this fundamental quantity to a few % precision.Comment: 20 pages, 4 figure

    On the charge radius of the neutrino

    Get PDF
    Using the pinch technique we construct at one-loop order a neutrino charge radius, which is finite, depends neither on the gauge-fixing parameter nor on the gauge-fixing scheme employed, and is process-independent. This definition stems solely from an effective proper photon-neutrino one-loop vertex, with no reference to box or self-energy contributions. The role of the WWWW box in this construction is critically examined. In particular it is shown that the exclusion of the effective WW box from the definition of the neutrino charge radius is not a matter of convention but is in fact dynamically realized when the target-fermions are right-handedly polarized. In this way we obtain a unique decomposition of effective self-energies, vertices, and boxes, which separately respect electroweak gauge invariance. We elaborate on the tree-level origin of the mechanism which enforces at one-loop level massive cancellations among the longitudinal momenta appearing in the Feynman diagrams, and in particular those associated with the non-abelian character of the theory. Various issues related to the known connection between the pinch technique and the Background Field Method are further clarified. Explicit closed expressions for the neutrino charge radius are reported.Comment: 26 pages, plain Latex, 7 Figures in a separate ps fil

    Charge and Magnetic Moment of the Neutrino in the Background Field Method and in the Linear R_xi^L Gauge

    Get PDF
    We present a computation of the charge and the magnetic moment of the neutrino in the recently developed electro-weak Background Field Method and in the linear RξLR_{\xi}^L gauge. First, we deduce a formal Ward-Takahashi identity which implies the immediate cancellation of the neutrino electric charge. This Ward-Takahashi identity is as simple as that for QED. The computation of the (proper and improper) one loop vertex diagrams contributing to the neutrino electric charge is also presented in an arbitrary gauge, checking in this way the Ward-Takahashi identity previously obtained. Finally, the calculation of the magnetic moment of the neutrino, in the minimal extension of the Standard Model with massive Dirac neutrinos, is presented, showing its gauge parameter and gauge structure independence explicitly.Comment: Latex, 19 pages, 9 PS and 10 EPS figures. One reference added. Appendix B modified and Appendices C-E eliminated. To be published in Eur. Phys. J.

    METing SUSY on the Z peak

    Full text link
    Recently the ATLAS experiment announced a 3 σ\sigma excess at the Z-peak consisting of 29 pairs of leptons together with two or more jets, ETmiss>225E_T^{\rm miss}> 225 GeV and HT600H_T \geq 600 GeV, to be compared with 10.6±3.210.6 \pm 3.2 expected lepton pairs in the Standard Model. No excess outside the Z-peak was observed. By trying to explain this signal with SUSY we find that only relatively light gluinos, mg~1.2m_{\tilde g} \lesssim 1.2 TeV, together with a heavy neutralino NLSP of mχ~400m_{\tilde \chi} \gtrsim 400 GeV decaying predominantly to Z-boson plus a light gravitino, such that nearly every gluino produces at least one Z-boson in its decay chain, could reproduce the excess. We construct an explicit general gauge mediation model able to reproduce the observed signal overcoming all the experimental limits. Needless to say, more sophisticated models could also reproduce the signal, however, any model would have to exhibit the following features, light gluinos, or heavy particles with a strong production cross-section, producing at least one Z-boson in its decay chain. The implications of our findings for the Run II at LHC with the scaling on the Z peak, as well as for the direct search of gluinos and other SUSY particles, are pointed out.Comment: 24 pages, 17 figures, simulation improved, Checkmate analysis added, new benchmark point included. Typos corrected, conclusions unchange

    IGR J19294+1816: a new Be-X ray binary revealed through infrared spectroscopy

    Get PDF
    The aim of this work is to characterize the counterpart to the INTEGRAL High Mass X-ray Binary candidate IGR J19294+1816 so as to establish its true nature. We obtained H band spectra of the selected counterpart acquired with the NICS instrument mounted on the Telescopio Nazionale Galileo (TNG) 3.5-m telescope which represents the first infrared spectrum ever taken of this source. We complement the spectral analysis with infrared photometry from UKIDSS, 2MASS, WISE and NEOWISE databases. We classify the mass donor as a Be star. Subsequently, we compute its distance by properly taking into account the contamination produced by the circumstellar envelope. The findings indicate that IGR J19294+1816 is a transient source with a B1Ve donor at a distance of d=11±1d = 11 \pm 1 kpc, and luminosities of the order of 10363710^{36-37} erg s1^{-1}, displaying the typical behaviour of a Be X-ray binary.Comment: 8 pages, 6 figures, accepted to be published in MNRA

    T and CPT Symmetries in Entangled Neutral Meson Systems

    Get PDF
    Genuine tests of an asymmetry under T and/or CPT transformations imply the interchange between in-states and out-states. I explain a methodology to perform model-indepedent separate measurements of the three CP, T and CPT symmetry violations for transitions involving the decay of the neutral meson systems in B- and {\Phi}-factories. It makes use of the quantum-mechanical entanglement only, for which the individual state of each neutral meson is not defined before the decay of its orthogonal partner. The final proof of the independence of the three asymmetries is that no other theoretical ingredient is involved and that the event sample corresponding to each case is different from the other two. The experimental analysis for the measurements of these three asymmetries as function of the time interval {\Delta}t > 0 between the first and second decays is discussed, as well as the significance of the expected results. In particular, one may advance a first observation of true, direct, evidence of Time-Reserval-Violation in B-factories by many standard deviations from zero, without any reference to, and independent of, CP-Violation. In some quantum gravity framework the CPT-transformation is ill-defined, so there is a resulting loss of particle-antiparticle identity. This mechanism induces a breaking of the EPR correlation in the entanglement imposed by Bose statistics to the neutral meson system, the so-called {\omega}-effect. I present results and prospects for the {\omega}-parameter in the correlated neutral meson-antimeson states.Comment: Proc. DISCRETE 2010, Symposium on Prospects in the Physics of Discrete Symmetries, December 2010, Rom

    Reconciling the LEP and Slac Measurements of Sin^2(\Theta_W)

    Full text link
    We consider whether a discrepancy between the SLAC and LEP measurements of \Sw can be explained by new physics. We find that only the contribution of a new neutral gauge boson, ZZ^\prime, nearly degenerate with the Z can affect the SLAC measurement while leaving the LEP observables almost unaffected. We briefly discuss possible signals for this new gauge boson, including changes in the ZZ lineshape when measured with polarised electrons, small changes in RbR_b, AFBeA^e_{FB}, and larger changes in two jet and ttˉt\bar{t} production at hadron colliders.Comment: 8 pages , CERN-TH.7474/94, OUTP9424
    corecore