530 research outputs found

    EFFECT ON BOLL WEIGHT OF COTTON PLANTS PLANTED AT VARIOUS DENSITIES

    Get PDF
    Previous research has shown that yield of cotton increases with plant density until density reaches 16 to 20 plants m-2. In 1997 and 1998 cotton was planted at various densities ranging from 2.5 to 22.5 plants m-2 in a RCB design. Ten row feet (3.048 m) of cotton were cut at ground level in each plot and placed into separate bags. Plant density for each plot was found by counting the number of plants in the bag representing that plot. For each plant, a boll found was placed in a small bag representing the fruiting branch and position from which it had been taken. A token was placed in the compartment which contained this bag. Any position without a harvestable boll was recorded as zero. Each small bag was weighed (total boll weight) and number of bolls were determined from count of tokens thus providing mean boll weight. Mixed model analyses were performed on total yield, mean boll weight, and percent harvestable bolls: however, only mean boll weight will be presented. A response surface was determined for fruiting position by plant density

    Cosmic-Ray Acceleration at Ultrarelativistic Shock Waves: Effects of Downstream Short-Wave Turbulence

    Full text link
    The present paper is the last of a series studying the first-order Fermi acceleration processes at relativistic shock waves with the method of Monte Carlo simulations applied to shocks propagating in realistically modeled turbulent magnetic fields. The model of the background magnetic field structure of Niemiec & Ostrowski (2004, 2006) has been augmented here by a large-amplitude short-wave downstream component, imitating that generated by plasma instabilities at the shock front. Following Niemiec & Ostrowski (2006), we have considered ultrarelativistic shocks with the mean magnetic field oriented both oblique and parallel to the shock normal. For both cases simulations have been performed for different choices of magnetic field perturbations, represented by various wave power spectra within a wide wavevector range. The results show that the introduction of the short-wave component downstream of the shock is not sufficient to produce power-law particle spectra with the "universal" spectral index 4.2. On the contrary, concave spectra with cutoffs are preferentially formed, the curvature and cutoff energy being dependent on the properties of turbulence. Our results suggest that the electromagnetic emission observed from astrophysical sites with relativistic jets, e.g. AGN and GRBs, is likely generated by particles accelerated in processes other than the widely invoked first-order Fermi mechanism.Comment: 9 pages, 8 figures, submitted to Ap

    Cosmic-ray Acceleration at Ultrarelativistic Shock Waves: Effects of a "Realistic" Magnetic Field Structure

    Full text link
    First-order Fermi acceleration processes at ultrarelativistic shocks are studied with Monte Carlo simulations. The accelerated particle spectra are derived by integrating the exact particle trajectories in a turbulent magnetic field near the shock. ''Realistic'' features of the field structure are included. We show that the main acceleration process at superluminal shocks is the particle compression at the shock. Formation of energetic spectral tails is possible in a limited energy range only for highly perturbed magnetic fields, with cutoffs occuring at low energies within the resonance energy range considered. These spectral features result from the anisotropic character of particle transport in the downstream magnetic field, where field compression produces effectively 2D perturbations. Because of the downstream field compression, the acceleration process is inefficient in parallel shocks for larger turbulence amplitudes, and features observed in oblique shocks are recovered. For small-amplitude turbulence, wide-energy range particle spectra are formed and modifications of the process due to the existence of long-wave perturbations are observed. In both sub- and superluminal shocks, an increase of \gamma leads to steeper spectra with lower cut-off energies. The spectra obtained for the ``realistic'' background conditions assumed here do not converge to the ``universal'' spectral index claimed in the literature. Thus the role of the first-order Fermi process in astrophysical sources hosting relativistic shocks requires serious reanalysis.Comment: submitted to Ap

    Temperature dependent fluorescence in disordered Frenkel chains: interplay of equilibration and local band-edge level structure

    Get PDF
    We model the optical dynamics in linear Frenkel exciton systems governed by scattering on static disorder and lattice vibrations, and calculate the temperature dependent fluorescence spectrum and lifetime. The fluorescence Stokes shift shows a nonmonotonic behavior with temperature, which derives from the interplay of the local band-edge level structure and thermal equilibration. The model yields excellent fits to experiments performed on linear dye aggregates.Comment: 4 pages, 3 figure

    Diffusive Shock Acceleration of High Energy Cosmic Rays

    Full text link
    The process of diffusive acceleration of charged particles in shocked plasmas is widely invoked in astrophysics to account for the ubiquitous presence of signatures of non-thermal relativistic electrons and ions in the universe. A key characteristic of this statistical energization mechanism is the absence of a momentum scale; astrophysical systems generally only impose scales at the injection (low energy) and loss (high energy) ends of the particle spectrum. The existence of structure in the cosmic ray spectrum (the "knee") at around 3000 TeV has promoted contentions that there are at least two origins for cosmic rays, a galactic one supplying those up to the knee, and even beyond, and perhaps an extragalactic one that can explain even the ultra-high energy cosmic rays (UHECRs) seen at 1-300 EeV. Accounting for the UHECRs with familiar astrophysical sites of acceleration has historically proven difficult due to the need to assume high magnetic fields in order to reduce the shortest diffusive acceleration timescale, the ion gyroperiod, to meaningful values. Yet active galaxies and gamma-ray bursts remain strong and interesting candidate sources for UHECRs, turning the theoretical focus to relativistic shocks. This review summarizes properties of diffusive shock acceleration that are salient to the issue of UHECR generation. These include spectral indices, acceleration efficencies and timescales, as functions of the shock speed and mean field orientation, and also the nature of the field turbulence. The interpretation of these characteristics in the context of gamma-ray burst models for the production of UHECRs is also examined.Comment: 10 pages, 2 embedded figures, To appear in Nuclear Physics B, Proceedings Supplements, as part of the volume for the CRIS 2004, Cosmic Ray International Seminar: "GZK and Surroundings.

    Analytical Study of Diffusive Relativistic Shock Acceleration

    Full text link
    Particle acceleration in relativistic shocks is studied analytically in the test-particle, small-angle scattering limit, for an arbitrary velocity-angle diffusion function D. Accurate analytic expressions for the spectral index s are derived using few (2-6) low-order moments of the shock-frame angular distribution. For isotropic diffusion, previous results are reproduced and justified. For anisotropic diffusion, s is shown to be sensitive to D, particularly downstream and at certain angles, and a wide range of s values is attainable. The analysis, confirmed numerically, can be used to test collisionless shock models and to observationally constrain D. For example, strongly forward- or backward-enhanced diffusion downstream is ruled out by GRB afterglow observations.Comment: 4 pages, 2 figures, PRL accepted, minor change

    Self-Similar Collisionless Shocks

    Full text link
    Observations of gamma-ray burst afterglows suggest that the correlation length of magnetic field fluctuations downstream of relativistic non-magnetized collisionless shocks grows with distance from the shock to scales much larger than the plasma skin depth. We argue that this indicates that the plasma properties are described by a self-similar solution, and derive constraints on the scaling properties of the solution. For example, we find that the scaling of the characteristic magnetic field amplitude with distance from the shock is B \propto D^{s_B} with -1<s_B<=0, that the spectrum of accelerated particles is dn/dE \propto E^{-2/(s_B+1)}, and that the scaling of the magnetic correlation function is \propto x^{2s_B} (for x>>D). We show that the plasma may be approximated as a combination of two self-similar components: a kinetic component of energetic particles and an MHD-like component representing "thermal" particles. We argue that the latter may be considered as infinitely conducting, in which case s_B=0 and the scalings are completely determined (e.g. dn/dE \propto E^{-2} and B \propto D^0). Similar claims apply to non- relativistic shocks such as in supernova remnants, if the upstream magnetic field can be neglected. Self-similarity has important implications for any model of particle acceleration and/or field generation. For example, we show that the diffusion function in the angle \mu of momentum p in diffusive shock acceleration models must satisfy D_{\mu\mu}(p,D) = D^{-1}D'_{\mu\mu}(p/D), and that a previously suggested model for the generation of large scale magnetic fields through a hierarchical merger of current-filaments should be generalized. A numerical experiment testing our analysis is outlined (Abridged).Comment: 16 pages, 1 figure, accepted for publication in Ap

    Cosmic Ray Acceleration at Relativistic Shock Waves with a "Realistic" Magnetic Field Structure

    Full text link
    The process of cosmic ray first-order Fermi acceleration at relativistic shock waves is studied with the method of Monte Carlo simulations. The simulations are based on numerical integration of particle equations of motion in a turbulent magnetic field near the shock. In comparison to earlier studies, a few "realistic" features of the magnetic field structure are included. The upstream field consists of a mean field component inclined at some angle to the shock normal with finite-amplitude sinusoidal perturbations imposed upon it. The perturbations are assumed to be static in the local plasma rest frame. Their flat or Kolmogorov spectra are constructed with randomly drawn wave vectors from a wide range (kmin,kmax)(k_{min}, k_{max}). The downstream field structure is derived from the upstream one as compressed at the shock. We present particle spectra and angular distributions obtained at mildly relativistic sub- and superluminal shocks and also parallel shocks. We show that particle spectra diverge from a simple power-law, the exact shape of the spectrum depends on both the amplitude of the magnetic field perturbations and the wave power spectrum. Features such as spectrum hardening before the cut-off at oblique subluminal shocks and formation of power-law tails at superluminal ones are presented and discussed. At parallel shocks, the presence of finite-amplitude magnetic field perturbations leads to the formation of locally oblique field configurations at the shock and the respective magnetic field compressions. This results in the modification of the particle acceleration process, introducing some features present in oblique shocks, e.g., particle reflections from the shock. We demonstrate for parallel shocks a (nonmonotonic) variation of the particle spectral index with the turbulence amplitude.Comment: revised version (37 pages, 13 figures

    Triple coalescence singularity in a dynamical atomic process

    Full text link
    We show that the high energy limit for the amplitude of the double electron capture to the bound state of the Coulomb field of a nucleus with emission of a single photon is determined by behavior of the wave function in the vicinity of the singular triple coalescence point.Comment: 3 page
    • …
    corecore