154 research outputs found

    Supersymmetric Dark Matter after LHC Run 1

    Get PDF
    Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, neutralino_1, assumed here to be the LSP and thus the Dark Matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly-degenerate next-to-lightest supersymmetric particle (NLSP) such as the lighter stau (stau_1), stop (stop_1) or chargino (chargino_1), resonant annihilation via direct-channel heavy Higgs bosons H/A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2 and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the stau_1 coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for missing E_T events and long-lived charged particles, whereas their H/A funnel, focus-point and chargino_1 coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. We find that the dominant DM mechanism in our pMSSM10 analysis is chargino_1 coannihilation: {parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches.Comment: 21 pages, 8 figure

    The pMSSM10 after LHC Run 1

    Get PDF
    We present a frequentist analysis of the parameter space of the pMSSM10, in which the following 10 soft SUSY-breaking parameters are specified independently at the mean scalar top mass scale Msusy = Sqrt[M_stop1 M_stop2]: the gaugino masses M_{1,2,3}, the 1st-and 2nd-generation squark masses M_squ1 = M_squ2, the third-generation squark mass M_squ3, a common slepton mass M_slep and a common trilinear mixing parameter A, the Higgs mixing parameter mu, the pseudoscalar Higgs mass M_A and tan beta. We use the MultiNest sampling algorithm with 1.2 x 10^9 points to sample the pMSSM10 parameter space. A dedicated study shows that the sensitivities to strongly-interacting SUSY masses of ATLAS and CMS searches for jets, leptons + MET signals depend only weakly on many of the other pMSSM10 parameters. With the aid of the Atom and Scorpion codes, we also implement the LHC searches for EW-interacting sparticles and light stops, so as to confront the pMSSM10 parameter space with all relevant SUSY searches. In addition, our analysis includes Higgs mass and rate measurements using the HiggsSignals code, SUSY Higgs exclusion bounds, the measurements B-physics observables, EW precision observables, the CDM density and searches for spin-independent DM scattering. We show that the pMSSM10 is able to provide a SUSY interpretation of (g-2)_mu, unlike the CMSSM, NUHM1 and NUHM2. As a result, we find (omitting Higgs rates) that the minimum chi^2/dof = 20.5/18 in the pMSSM10, corresponding to a chi^2 probability of 30.8 %, to be compared with chi^2/dof = 32.8/24 (31.1/23) (30.3/22) in the CMSSM (NUHM1) (NUHM2). We display 1-dimensional likelihood functions for SUSY masses, and show that they may be significantly lighter in the pMSSM10 than in the CMSSM, NUHM1 and NUHM2. We discuss the discovery potential of future LHC runs, e+e- colliders and direct detection experiments.Comment: 47 pages, 29 figure

    Slepton pair production in the POWHEG BOX

    Full text link
    We present an implementation for slepton pair production at hadron colliders in the POWHEG BOX, a framework for combining next-to-leading order QCD calculations with parton-shower Monte-Carlo programs. Our code provides a SUSY Les Houches Accord interface for setting the supersymmetric input parameters. Decays of the sleptons and parton-shower effects are simulated with PYTHIA. Focussing on a representative point in the supersymmetric parameter space we show results for kinematic distributions that can be observed experimentally. While next-to-leading order QCD corrections are sizable for all distributions, the parton shower affects the color-neutral particles only marginally. Pronounced parton-shower effects are found for jet distributions.Comment: 10 pages, 4 figure

    On the NLO QCD corrections to the production of the heaviest neutral Higgs scalar in the MSSM

    Full text link
    We present a calculation of the two-loop top-stop-gluino contributions to Higgs production via gluon fusion in the MSSM. By means of an asymptotic expansion in the heavy particle masses, we obtain explicit and compact analytic formulae that are valid when the Higgs and the top quark are lighter than stops and gluino, without assuming a specific hierarchy between the Higgs mass and the top mass. Being applicable to the heaviest Higgs scalar in a significant region of the MSSM parameter space, our results complement earlier ones obtained with a Taylor expansion in the Higgs mass, and can be easily implemented in computer codes to provide an efficient and accurate determination of the Higgs production cross section.Comment: 18 pages, 4 figure

    Top-mass effects in differential Higgs production through gluon fusion at order \alpha_s^4

    Get PDF
    Effects from a finite top quark mass on differential distributions in the Higgs+jet production cross section through gluon fusion are studied at next-to-leading order in the strong coupling, i.e. O(αs4)O(\alpha_s^4). Terms formally subleading in 1/mt1/m_t are calculated, and their influence on the transverse momentum and rapidity distribution of the Higgs boson are evaluated. We find that, for the differential K-factor, the heavy-top limit is valid at the 2-3% level as long as the transverse momentum of the Higgs remains below about 150 GeV.Comment: 21 pages, 12 figure

    Heavy-quark mass effects in Higgs boson production at the LHC

    Full text link
    We study the impact of heavy-quark masses in Higgs boson production through gluon fusion at the LHC. We extend previous computations of the fully differential cross section and of the transverse momentum spectrum of the Higgs boson by taking into account the finite top- and bottom-quark masses up to O(alpha_S^3). We also discuss the issues arising when the heavy-quark mass is much smaller than the Higgs mass. Our results are implemented in updated versions of the HNNLO and HRes numerical programs.Comment: Minor modifications, results unchanged. Discussion on uncertainties added. Version published on JHE

    Direct detection of Higgs-portal dark matter at the LHC

    Get PDF
    We consider the process in which a Higgs particle is produced in association with jets and show that monojet searches at the LHC already provide interesting constraints on the invisible decays of a 125 GeV Higgs boson. Using the existing monojet searches performed by CMS and ATLAS, we show the 95% confidence level limit on the invisible Higgs decay rate is of the order of the total Higgs production rate in the Standard Model. This limit could be significantly improved when more data at higher center of mass energies are collected, provided systematic errors on the Standard Model contribution to the monojet background can be reduced. We also compare these direct constraints on the invisible rate with indirect ones based on measuring the Higgs rates in visible channels. In the context of Higgs portal models of dark matter, we then discuss how the LHC limits on the invisible Higgs branching fraction impose strong constraints on the dark matter scattering cross section on nucleons probed in direct detection experiments.Comment: 6 pages, 3 figures; v2: references added; v3: monojet and Higgs data updated, version published in EPJ

    Quark masses in Higgs production with a jet veto

    Get PDF
    We study the impact of finite mass effects due to top and bottom loops in the jet-veto distribution for Higgs production. We discuss the appearance of non-factorizing logarithms in the region p t,veto ≳ m b . We study their numerical impact and argue that these terms can be treated as a finite remainder. We therefore detail our prescription for resumming the jet-vetoed cross section and for assessing its uncertainty in the presence of finite mass effects. Resummation for the jet-veto, including mass effects, has been implemented in the public code JetVHeto

    Likelihood analysis of the pMSSM11 in light of LHC 13-TeV data

    Get PDF
    We use MasterCode to perform a frequentist analysis of the constraints on a phenomenological MSSM model with 11 parameters, the pMSSM11, including constraints from ∼36 /fb of LHC data at 13 TeV and PICO, XENON1T and PandaX-II searches for dark matter scattering, as well as previous accelerator and astrophysical measurements, presenting fits both with and without the (g−2)μ constraint. The pMSSM11 is specified by the following parameters: 3 gaugino masses M1,2,3 , a common mass for the first-and second-generation squarks mq~ and a distinct third-generation squark mass mq~3 , a common mass for the first-and second-generation sleptons mℓ~ and a distinct third-generation slepton mass mτ~ , a common trilinear mixing parameter A, the Higgs mixing parameter μ , the pseudoscalar Higgs mass MA and tanβ . In the fit including (g−2)μ , a Bino-like χ~01 is preferred, whereas a Higgsino-like χ~01 is mildly favoured when the (g−2)μ constraint is dropped. We identify the mechanisms that operate in different regions of the pMSSM11 parameter space to bring the relic density of the lightest neutralino, χ~01 , into the range indicated by cosmological data. In the fit including (g−2)μ , coannihilations with χ~02 and the Wino-like χ~±1 or with nearly-degenerate first- and second-generation sleptons are active, whereas coannihilations with the χ~02 and the Higgsino-like χ~±1 or with first- and second-generation squarks may be important when the (g−2)μ constraint is dropped. In the two cases, we present χ2 functions in two-dimensional mass planes as well as their one-dimensional profile projections and best-fit spectra. Prospects remain for discovering strongly-interacting sparticles at the LHC, in both the scenarios with and without the (g−2)μ constraint, as well as for discovering electroweakly-interacting sparticles at a future linear e+e− collider such as the ILC or CLIC

    Tandem plasmaferesi-emodialisi in bambini e giovani adulti

    Get PDF
    In pazienti che necessitino sia di plasmaferesi (PLF) che di emodialisi (ED), l'applicazione simultanea delle due metodiche, nota come tandem PLF-ED (TPE) può costituire una soluzione vantaggiosa. Tuttavia esiste scarsa esperienza circa il suo utilizzo, in particolare in età pediatrica. Abbiamo esaminato in modo retrospettivo le sedute di TPE eseguite negli ultimi 5 anni nel nostro Centro. I trattamenti di TPE sono stati 67 in 7 pazienti, di età mediana 16.2 anni (5–34) e peso mediano di 37 kg (17.0– 59.0). Le indicazioni per TPH erano: sindrome emolitica uremica atipica da deficit di fattore H, fattore I o da mutazioni non definite, nella maggior parte delle sedute (64/67 sedute), vasculite, glomerulosclerosi focale (prima del trapianto) e iperimmunizzazione in pazienti in lista per trapianto di rene. In 66/67 trattamenti la procedura è stata completata con successo, raggiungendo i volumi di sostituzione e ultrafiltrazione desiderati. La durata della PLF è stata inferiore a quella di ED, e non ha quindi comportato un prolungamento della seduta dialitica. Un unico trattamento è stato interrotto a causa di un episodio ipotensivo, in una paziente nota per ipotensioni ricorrenti. In conclusione la TPE è una procedura sicura e ben tollerata, anche in bambini e adolescenti stabili dal punto di vista emodinamico
    • …
    corecore