371 research outputs found

    Data reduction in the ITMS system through a data acquisition model with self-adaptive sampling rate

    Get PDF
    Long pulse or steady state operation of fusion experiments require data acquisition and processing systems that reduce the volume of data involved. The availability of self-adaptive sampling rate systems and the use of real-time lossless data compression techniques can help solve these problems. The former is important for continuous adaptation of sampling frequency for experimental requirements. The latter allows the maintenance of continuous digitization under limited memory conditions. This can be achieved by permanent transmission of compressed data to other systems. The compacted transfer ensures the use of minimum bandwidth. This paper presents an implementation based on intelligent test and measurement system (ITMS), a data acquisition system architecture with multiprocessing capabilities that permits it to adapt the system’s sampling frequency throughout the experiment. The sampling rate can be controlled depending on the experiment’s specific requirements by using an external dc voltage signal or by defining user events through software. The system takes advantage of the high processing capabilities of the ITMS platform to implement a data reduction mechanism based in lossless data compression algorithms which are themselves based in periodic deltas

    Event Recognition Using Signal Spectrograms in Long Pulse Experiments

    Get PDF
    As discharge duration increases, real-time complex analysis of the signal becomes more important. In this context, data acquisition and processing systems must provide models for designing experiments which use event oriented plasma control. One example of advanced data analysis is signal classification. The off-line statistical analysis of a large number of discharges provides information to develop algorithms for the determination of the plasma parameters from measurements of magnetohydrodinamic waves, for example, to detect density fluctuations induced by the Alfvén cascades using morphological patterns. The need to apply different algorithms to the signals and to address different processing algorithms using the previous results necessitates the use of an event-based experiment. The Intelligent Test and Measurement System platform is an example of architecture designed to implement distributed data acquisition and real-time processing systems. The processing algorithm sequence is modeled using an event-based paradigm. The adaptive capacity of this model is based on the logic defined by the use of state machines in SCXML. The Intelligent Test and Measurement System platform mixes a local multiprocessing model with a distributed deployment of services based on Jini

    Literature review on the potential of urban waste for the fertilization of urban agriculture: A closer look at the metropolitan area of Barcelona

    Get PDF
    Urban agriculture (UA) activities are increasing in popularity and importance due to greater food demands and reductions in agricultural land, also advocating for greater local food supply and security as well as the social and community cohesion perspective. This activity also has the potential to enhance the circularity of urban flows, repurposing nutrients from waste sources, increasing their self-sufficiency, reducing nutrient loss into the environment, and avoiding environmental cost of nutrient extraction and synthetization.The present work is aimed at defining recovery technologies outlined in the literature to obtain relevant nutrients such as N and P from waste sources in urban areas. Through literature research tools, the waste sources were defined, differentiating two main groups: (1) food, organic, biowaste and (2) wastewater. Up to 7 recovery strategies were identified for food, organic, and biowaste sources, while 11 strategies were defined for wastewater, mainly focusing on the recovery of N and P, which are applicable in UA in different forms.The potential of the recovered nutrients to cover existing and prospective UA sites was further assessed for the metropolitan area of Barcelona. Nutrient recovery from current composting and anaerobic digestion of urban sourced organic matter obtained each year in the area as well as the composting of wastewater sludge, struvite precipitation and ion exchange in wastewater effluent generated yearly in existing WWTPs were assessed. The results show that the requirements for the current and prospective UA in the area can be met 2.7 to 380.2 times for P and 1.7 to 117.5 times for N depending on the recovery strategy. While the present results are promising, current perceptions, legislation and the implementation and production costs compared to existing markets do not facilitate the application of nutrient recovery strategies, although a change is expected in the near future

    A versatile trigger and synchronization module with IEEE1588 capabilities and EPICS support.

    Get PDF
    Event timing and synchronization are two key aspects to improve in the implementation of distributed data acquisition (dDAQ) systems such as the ones used in fusion experiments. It is also of great importance the integration of dDAQ in control and measurement networks. This paper analyzes the applicability of the IEEE1588 and EPICS standards to solve these problems, and presents a hardware module implementation based in both of them that allow adding these functionalities to any DAQ. The IEEE1588 standard facilitates the integration of event timing and synchronization mechanisms in distributed data acquisition systems based on IEEE 803.3 (Ethernet). An optimal implementation of such system requires the use of network interface devices which include specific hardware resources devoted to the IEE1588 functionalities. Unfortunately, this is not the approach followed in most of the large number of applications available nowadays. Therefore, most solutions are based in software and use standard hardware network interfaces. This paper presents the development of a hardware module (GI2E) with IEEE1588 capabilities which includes USB, RS232, RS485 and CAN interfaces. This permits to integrate any DAQ element that uses these interfaces in dDAQ systems in an efficient and simple way. The module has been developed with Motorola's Coldfire MCF5234 processor and National Semiconductors's PHY DP83640T, providing it with the possibility to implement the PTP protocol of IEEE1588 by hardware, and therefore increasing its performance over other implementations based in software. To facilitate the integration of the dDAQ system in control and measurement networks the module includes a basic Input/Output Controller (IOC) functionality of the Experimental Physics and Industrial Control System (EPICS) architecture. The paper discusses the implementation details of this module and presents its applications in advanced dDAQ applications in the fusion community

    New information processing methods for control in magnetically confinement nuclear fusion

    Get PDF
    Thermonuclear plasmas are complex and highly non-linear physical objects and therefore, in the most advanced present day devices for the study of magnetic confinement fusion, thousands of signals have to be acquired for each experiment, in order to progress with the understanding indispensable for the final reactor. On the other hand, the resulting massive databases, more than 40 Tbytes in the case of the JET joint Undertaking, pose significant problems. In this paper, solutions to reduce the shear amount of data by different compression techniques and adaptive sampling frequency architectures are presented. As an example of methods capable of providing significant help in the data analysis and real time control, a Classification and Regression Tree software is applied to the problem of regime identification, to discriminate in an automatic way whether the plasma is in the L or H confinement mode

    Service-oriented architecture of adaptive, intelligent data acquisition and processing systems for long-pulse fusion experiments

    Get PDF
    The data acquisition systems used in long-pulse fusion experiments need to implement data reduction and pattern recognition algorithms in real time. In order to accomplish these operations, it is essential to employ software tools that allow for hot swap capabilities throughout the temporal evolution of the experiments. This is very important because processing needs are not equal during different phases of the experiment. The intelligent test and measurement system (ITMS) developed by UPM and CIEMAT is an example of a technology for implementing scalable data acquisition and processing systems based on PXI and CompactPCI hardware. In the ITMS platform, a set of software tools allows the user to define the processing algorithms associated with the different experimental phases using state machines driven by software events. These state machines are specified using the State Chart XML (SCXML) language. The software tools are developed using JAVA, JINI, an SCXML engine and several LabVIEW applications. Within this schema, it is possible to execute data acquisition and processing applications in an adaptive way. The power of SCXML semantics and the ability to work with XML user-defined data types allow for very easy programming of the ITMS platform. With this approach, the ITMS platform is a suitable solution for implementing scalable data acquisition and processing systems based on a service-oriented model with the ability to easily implement remote participation applications

    Urban road surface discrimination by tire-road noise analysis and data clustering

    Get PDF
    The surface condition of roadways has direct consequences on a wide range of processes related to the transportation technology, quality of road facilities, road safety, and traffic noise emissions. Methods developed for detection of road surface condition are crucial for maintenance and rehabilitation plans, also relevant for driving environment detection for autonomous transportation systems and e-mobility solutions. In this paper, the clustering of the tire-road noise emission features is proposed to detect the condition of the wheel tracks regions during naturalistic driving events. This acoustic-based methodology was applied in urban areas under nonstop real-life traffic conditions. Using the proposed method, it was possible to identify at least two groups of surface status on the inspected routes over the wheel-path interaction zone. The detection rate on urban zone reaches 75% for renewed lanes and 72% for distressed lanes

    Relationship between emergency presentation, systemic inflammatory response, and cancer-specific survival in patients undergoing potentially curative surgery for colon cancer

    Get PDF
    Background Emergency presentation is recognized to be associated with poorer cancer-specific survival following curative resection for colorectal cancer. The present study examined the hypothesis that an enhanced systemic inflammatory response, prior to surgery, might explain the impact of emergency presentation on survival. Methods In all, 188 patients undergoing potentially curative resection for colorectal cancer were studied. Of these, 55 (29%) presented as emergencies. The systemic inflammatory response was assessed using the Glasgow Prognostic Score (mGPS), which is the combination of an elevated C-reactive protein (>10 mg/L) and hypoalbuminemia (<35 g/L). Results In the emergency group, tumor stage was greater (P < 0.01), more patients received adjuvant therapy (P < 0.01) more patients had an elevated mGPS (P < 0.01), and more patients died of their disease (P < 0.05). The minimum follow-up was 12 months; the median follow-up of the survivors was 48 months. Emergency presentation was associated with poorer 3-year cancer-specific survival in those patients aged 65 to 74 years (P < 0.01), in both males and females (P < 0.05), in the deprived (P < 0.01), in patients with tumor-node-metastasis (TNM) stage II disease (P < 0.01), in those who received no adjuvant therapy (P < 0.01), and in the mGPS 0 and 1 groups (P < 0.05) groups. On multivariate survival analysis of patients undergoing potentially curative surgery for TNM stage II colon cancer, emergency presentation (P < 0.05) and mGPS (P < 0.05) were independently associated with cancer-specific survival. Conclusions These results suggest that emergency presentation and the presence of systemic inflammatory response prior to surgery are linked and account for poorer cancer-specific survival in patients undergoing potentially curative surgery for colon cancer. Both emergency presentation and an elevated mGPS should be taken into account when assessing the likely outcome of these patients
    • …
    corecore