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As discharge duration increases, real-time complex analysis of the signal becomes more important.
In this context, data acquisition and processing systems must provide models for designing
experiments which use event oriented plasma control. One example of advanced data analysis is
signal classification. The off-line statistical analysis of a large number of discharges provides
information to develop algorithms for the determination of the plasma parameters from
measurements of magnetohydrodinamic waves, for example, to detect density fluctuations induced
by the Alfvén cascades using morphological patterns. The need to apply different algorithms to the
signals and to address different processing algorithms using the previous results necessitates the use
of an event-based experiment. The Intelligent Test and Measurement System platform is an example
of architecture designed to implement distributed data acquisition and real-time processing systems.
The processing algorithm sequence is modeled using an event-based paradigm. The adaptive
capacity of this model is based on the logic defined by the use of state machines in SCXML. The
Intelligent Test and Measurement System platform mixes a local multiprocessing model with a
distributed deployment of services based on Jini. © 2010 American Institute of
Physics. �doi:10.1063/1.3494273�

I. INTRODUCTION

The acquisition of signals during fusion experiments
provides knowledge of the physical properties of plasma.1 As
the duration of discharge increases, the analysis of these sig-
nals in real-time and under more complex functional require-
ments becomes more relevant. The acquisition and process-
ing systems applied in this context should provide simple
models. In particular, they should allow for the design of
experiments in which the sequence of signal processing steps
will be determined by the evolution of the experiment.

The Intelligent Test and Measurement System �ITMS�2,3

developed by Universidad Politécnica de Madrid and Asoci-
ación EURATOM/CIEMAT para Fusión is a real-time data
acquisition and processing distributed system. In ITMS, the
sequence of signal processing is determined based on prior
events. The flexibility and adaptive capacity of this model lie
in the fact that the underlying logic of the experiment is
defined by state machines expressed in SCXML. The ITMS
platform combines a local multiprocessing model with a dis-
tributed deployment based on the ability of each node to
provide full functionality in the form of services based in
Jini. This paper proposes the design of adaptive models for
signal classification using morphological patterns in spectro-
grams. Both the ITMS platform and the signal classifiers that
the scientific community has developed in recent years are
used. This system can direct the flow of processing based on
the spectrogram classification results. In short, this system

defines an experiment in which the processing of data ac-
quired can be governed by the evolution of the plasma state.
The specific algorithm development could be responsible for
the detection of magnetohydrodinamic instabilities, L-H/H-L
transitions or disruptions, for example.

II. TOOLS FOR FUSION SIGNALS CLASSIFICATION

The signals, which are acquired during fusion diagnos-
tics, reflect the physical properties of the plasma. The analy-
sis of these signals allows for the study of the behavior of
plasma during different discharges, for characterization of
the physical phenomena observed, and for detection of any
loss of confinement or disruption.4 Disruption arises sud-
denly and inevitably and can jeopardize the integrity of the
reactor.

In recent years, various methods have been designed to
perform the extraction of relevant features in the acquired
signals. Based on these classification systems, which enable
the structured storage and retrieval of signals through data-
base management systems using physical criteria in the
query, parameter characterizations have been proposed, for
example, morphological characteristics obtained through
techniques of structural pattern recognition.1 Various tech-
niques of artificial intelligence, as well as other advanced
treatments of signals, have been used to implement auto-
matic classifiers. Some of these specialize in the prediction
of the relevant disruptions. With the increase in the duration
of discharge time, proposals able to work in real-time be-
come more relevant. Various approaches are based on artifi-
cial neural networks,5 support vector machines,6 or fuzzy
logic combined with regression trees.7 These approaches not
only highlight the importance of characterizing and classifi-
cation of signals but also make it possible to detect events
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associated with the results of the classification in real-time.
The detection of these events provides an opportunity to pro-
pose experiments in which control logic is directed by the
evolution of the experiment. The result is a reactive system
that can adapt to the context.

III. EVENT-BASED SYSTEMS: ITMS

ITMS2,3 is a platform designed to deploy scalable data
acquisition and processing systems based on events, using
PXI and CompactPCI hardware. ITMS is formed by a set of
nodes each of which has the capacity of local parallel pro-
cessing in real-time with the possibility of hot swap for pro-
cessing algorithms. Each node represents one or more ser-
vices available through the mechanisms of publication–
subscription. Thus, ITMS is a service-oriented architecture
of adaptive and intelligent data acquisition and processing
systems.3 Each ITMS node may be governed by a state ma-
chine whose behavior is defined by a statechart expressed in
State Chart XML �SCXML�, a general-purpose event-based
state machine language with which it is very easy to define
the behavior of a system under a reactive paradigm. Cur-
rently, there are two available implementations of a SCXML
engine: APACHE COMMONS JAVA, which is not in real-time,
and a specific development in LABVIEW RT. Finally, a net-
work of ITMS nodes provide global distributed processing
capabilities that could be synchronized via IEEE1588 event
synchronization using ad hoc hardware.8 ITMS provides the
ability to easily implement remote participation applications.

IV. EVENT EXTRACTION FROM SPECTROGRAMS

The spectrogram of the signal encodes the information
on the time-frequency domain. This information has been
used to classify acquired signals. Detering et al.9 proposed a
practical structured analysis of multichannel time series mea-
surements from experiments on magnetic confinement fu-
sion. The proposal included a procedure for extraction of
significant features in the time-frequency domain using arti-
ficial vision techniques for segmentation of the spectrogram.
As the duration of the discharge increases, performing this
classification in real-time and accomplishing different tasks
depending on the results begin to be interesting. As noted in
Sec. II, there are also many implementations of classifiers
whose efficiency has been tested. It is interesting to reuse
these systems and to develop experiments that identify
plasma behaviors through the analysis of the spectrogram of
the signals. To show a simple example of the strategy to
follow, we analyze a simple signal that includes a chirping
mode and we develop a simple algorithm to extract of image
processing meaningful forms of the spectrogram. In practical
experiments, this signal represents the source of data that
identifies the physical behavior of the plasma that we want
detected.

The development of this kind of experiment in ITMS is
simple. On the one hand, the processing power of an ITMS
node allows for carrying out the algorithms for extracting
significant features. On the other hand, the existence of an
engine that governs the system facilitates the interconnection
with external classification systems. This engine also allows
the processing sequence to be event-driven and the process-

ing algorithms to be changed in different experimental
phases. Figure 1 shows the deployment of the system in an
experiment to characterize signals with the parameters of
HU. At the top are the signals acquired by the ITMS node.
These signals are processed, and the results are a HU set of
invariant moments. These HU moments are the features of
the signal, and they are sent to classifier system. Then, the
classifier system identifies the class of signal, and it commu-
nicates the result. Figure 1 shows also an outline of the state
machine �dynamic behavior� and icons that represent the
profiles and virtual instruments �VIs� �static knowledge�. The
bottom of Fig. 1 explores the interior of the ITMS node
showing only the specific elements required for each experi-
ment. Internally, and in parallel, the ITMS node executes the
engine that governs the entire course of the experiment. This
engine has been specifically developed in LABVIEW RT using
the same methodology applied in the development of lan-
guage processors �translators, compilers, and interpreters�.
Modeling an experiment in ITMS consists of defining the
static knowledge �which input channels to acquire and which
algorithms to use� and the dynamic behavior �which events
have to be detected, what system transitions they produce,
and which algorithms must be changed in response�.3 The
static knowledge is formed by a set of profiles and a set of
processing algorithms. Each profile is a file XML that links
channels with processing algorithms. The processing algo-
rithms are developed with LABVIEW VI. These VIs can in-
clude algorithms implemented in more generic languages
such as C/C�� or in more specific languages such as MAT-

LAB. The first advantage of this approach is that each virtual
instrument is designed exclusively for a specific goal. The VI
is therefore independent of other tasks, thus facilitating reus-
ability and maintenance.

The VI developed to extract the features of the signal
starts by making the spectrogram. We choose the short time
Fourier transform �STFT� for spectral decomposition. The

FIG. 1. �Color online� Upper area: The signal is processed by the ITMS
node to extract the features �Hu moments�. They are sent through the net-
work to the classification system that identifies the class. Middle area: Soft-
ware layer detail of ITMS. Lower area: Description of each state.
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settings for STFT are as follows: Hanning window type, 64
sample window length, 512 frequency bins, and 4 time steps.
These parameters can be adjusted depending on the nature of
the experiment. In this particular experiment, STFT was ap-
plied to a noisy chirp signal acquired with a 10 kHz sampling
frequency �Fig. 2�. Except for the frequency difference, such
a signal is not inconsistent with Alfvenic cascades observed
in JET �Ref. 10� or DIII-D. The next step is to convert the
spectrogram into an image �matrix pixels�. For this purpose,
the techniques and tools provided with LABVIEW Vision De-
velopment Module can be used. The image processing be-
gins with thresholding. This is done adaptively according to
the image histogram. The result is a binary image to which
processes of morphological change by closures and openings
�sequential implementation of erosions and dilations� can be
applied to smooth blobs �erase holes and smoothen edges� if
applicable. Then, the blobs are discretized using a labeling
algorithm �Fig. 2�. Finally, we performed the skeletonization
of the blobs, which results in several well-defined objects.
Having identified the significant forms of the spectrogram,
each HU moment was obtained. The moments are invariant
to operations of rotation, translation, and scale, and they are
the characteristics that describe the detected forms.

The dynamic behavior is formed by events that may oc-
cur, by the feasible states of the system, and by the transi-
tions that link them. The dynamic behavior is represented by
a state machine whose function is to govern the flow of the
experiment. The time taken to process the SCXML of the
experiment was 62 ms. In the first state, the profiles are
loaded in the memory, and the state machine evolves to the
next state. In the next state, the VI described above is
launched. When the engine of the state machine receives an
event �Fig. 1: Events� from the VI, it makes a change of
status �if applicable�. The function associated with the new
state then carries out the processing of the extracted features
�Fig. 1: Actions�. For this, the engine can either replace the
VI �hot swap operation� by another VI designed for this op-
eration or it can use a classification tool referred to in Sec. II
�Fig. 1�. These classification tools only need to include a
simple service layer capable of receiving and sending events
to the engine. Specifically, it is sufficient that the classifica-
tion tool has a TCP/IP port with a basic application layer

protocol. With this strategy, any external application can be
reused by simply establishing a channel to receive events as
messages. The result of classification is referred back to the
engine of the state machine which internally evolves through
the transitions and states. The system adapts its behavior, if
necessary, and it can modify the processing algorithm �hot
swap�. The state machine thus becomes the system logic con-
troller.

V. DISCUSSION

The main idea is to provide simple and versatile tools
that enable experiments with event oriented plasma control.
The ITMS features allow the researcher to focus on the de-
velopment of control-actuator algorithms that manipulate the
plasma given the signal class. These algorithms are devel-
oped as functional units specific to each phase of the experi-
ment. Thus, the sequencing logic is outside of the modules
and these can be independent. The implementation of acqui-
sition and processing test in the ITMS platform is organized
around a state machine that describes the behavior of the
system. This state machine is a logic controller because it
allows separate control logic from the processing algorithms.
This approach is similar to the inversion of control. The pres-
ence of the state machine makes the code more efficient,
easier to debug, and helps organize the program flow. It also
allows integrating other existing systems with minimal cou-
pling. It allows systems, which are not designed to interop-
erate, to work together. The result is a reactive system de-
signed under an event-driven paradigm. This paradigm is
traditionally used and therefore is very natural in data acqui-
sition and control systems. We intend to design an experi-
ment using event oriented plasma control and implement the
ITMS system on a real discharge.
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