4,284 research outputs found

    Modulational Instability in Nonlinearity-Managed Optical Media

    Get PDF
    We investigate analytically, numerically, and experimentally the modulational instability in a layered, cubically-nonlinear (Kerr) optical medium that consists of alternating layers of glass and air. We model this setting using a nonlinear Schr\"odinger (NLS) equation with a piecewise constant nonlinearity coefficient and conduct a theoretical analysis of its linear stability, obtaining a Kronig-Penney equation whose forbidden bands correspond to the modulationally unstable regimes. We find very good {\it quantitative} agreement between the theoretical analysis of the Kronig-Penney equation, numerical simulations of the NLS equation, and the experimental results for the modulational instability. Because of the periodicity in the evolution variable arising from the layered medium, we find multiple instability regions rather than just the one that would occur in uniform media.Comment: 13 pages, 12 figures (several with multiple parts); some important changes from the page proof stage implemented in this preprint versio

    Diffraction of a superfluid Fermi gas by an atomic grating

    Full text link
    An atomic grating generated by a pulsed standing wave laser field is proposed to manipulate the superfluid state in a quantum degenerate gas of fermionic atoms. We show that in the presence of atomic Cooper pairs, the density oscillations of the gas caused by the atomic grating exhibit a much longer coherence time than that in the normal Fermi gas. Our result indicates that the technique of a pulsed atomic grating can be a potential candidate to detect the atomic superfluid state in a quantum degenerate Fermi gas.Comment: 4 pages, 2 figure

    Nernst-Ettingshausen effect in two-component electronic liquids

    Full text link
    A simple model describing the Nernst-Ettingshausen effect (NEE) in two-component electronic liquids is formulated. The examples considered include graphite, where the normal and Dirac fermions coexist, superconductor in fluctuating regime, with coexisting Cooper pairs and normal electrons, and the inter-stellar plasma of electrons and protons. We give a general expression for the Nernst constant and show that the origin of a giant NEE is in the strong dependence of the chemical potential on temperature in all cases

    More about Birkhoff's Invariant and Thorne's Hoop Conjecture for Horizons

    Full text link
    A recent precise formulation of the hoop conjecture in four spacetime dimensions is that the Birkhoff invariant Ī²\beta (the least maximal length of any sweepout or foliation by circles) of an apparent horizon of energy EE and area AA should satisfy Ī²ā‰¤4Ļ€E\beta \le 4 \pi E. This conjecture together with the Cosmic Censorship or Isoperimetric inequality implies that the length ā„“\ell of the shortest non-trivial closed geodesic satisfies ā„“2ā‰¤Ļ€A\ell^2 \le \pi A. We have tested these conjectures on the horizons of all four-charged rotating black hole solutions of ungauged supergravity theories and find that they always hold. They continue to hold in the the presence of a negative cosmological constant, and for multi-charged rotating solutions in gauged supergravity. Surprisingly, they also hold for the Ernst-Wild static black holes immersed in a magnetic field, which are asymptotic to the Melvin solution. In five spacetime dimensions we define Ī²\beta as the least maximal area of all sweepouts of the horizon by two-dimensional tori, and find in all cases examined that Ī²(g)ā‰¤16Ļ€3E \beta(g) \le \frac{16 \pi}{3} E, which we conjecture holds quiet generally for apparent horizons. In even spacetime dimensions D=2N+2D=2N+2, we find that for sweepouts by the product S1ƗSDāˆ’4S^1 \times S^{D-4}, Ī²\beta is bounded from above by a certain dimension-dependent multiple of the energy EE. We also find that ā„“Dāˆ’2\ell^{D-2} is bounded from above by a certain dimension-dependent multiple of the horizon area AA. Finally, we show that ā„“Dāˆ’3\ell^{D-3} is bounded from above by a certain dimension-dependent multiple of the energy, for all Kerr-AdS black holes.Comment: 25 page

    Deforming glassy polystyrene: Influence of pressure, thermal history, and deformation mode on yielding and hardening

    Get PDF
    The toughness of a polymer glass is determined by the interplay of yielding, strain softening, and strain hardening. Molecular-dynamics simulations of a typical polymer glass, atactic polystyrene, under the influence of active deformation have been carried out to enlighten these processes. It is observed that the dominant interaction for the yield peak is of interchain nature and for the strain hardening of intrachain nature. A connection is made with the microscopic cage-to-cage motion. It is found that the deformation does not lead to complete erasure of the thermal history but that differences persist at large length scales. Also we find that the strain-hardening modulus increases with increasing external pressure. This new observation cannot be explained by current theories such as the one based on the entanglement picture and the inclusion of this effect will lead to an improvement in constitutive modeling

    Generation of macroscopic pair-correlated atomic beams by four-wave mixing in Bose-Einstein condensates

    Full text link
    By colliding two Bose-Einstein condensates we have observed strong bosonic stimulation of the elastic scattering process. When a weak input beam was applied as a seed, it was amplified by a factor of 20. This large gain atomic four-wave mixing resulted in the generation of two macroscopically occupied pair-correlated atomic beams.Comment: Please take eps files for best details in figure

    Large-Scale Atomistic Simulations of Environmental Effects on the Formation and Properties of Molecular Junctions

    Full text link
    Using an updated simulation tool, we examine molecular junctions comprised of benzene-1,4-dithiolate bonded between gold nanotips, focusing on the importance of environmental factors and inter-electrode distance on the formation and structure of bridged molecules. We investigate the complex relationship between monolayer density and tip separation, finding that the formation of multi-molecule junctions is favored at low monolayer density, while single-molecule junctions are favored at high density. We demonstrate that tip geometry and monolayer interactions, two factors that are often neglected in simulation, affect the bonding geometry and tilt angle of bridged molecules. We further show that the structures of bridged molecules at 298 and 77 K are similar.Comment: To appear in ACS Nano, 30 pages, 5 figure
    • ā€¦
    corecore