376 research outputs found

    Development of a simple unified volatility-based scheme (SUVS) for secondary organic aerosol formation using genetic algorithms

    Get PDF
    A new method is proposed to simplify complex atmospheric chemistry reaction schemes, while preserving SOA formation properties, using genetic algorithms. The method is first applied in this study to the gas-phase α-pinene oxidation scheme. The simple unified volatility-based scheme (SUVS) reflects the multi-generation evolution of chemical species from a near-explicit master chemical mechanism (MCM) and, at the same time, uses the volatility-basis set speciation for condensable products. The SUVS also unifies reactions between SOA precursors with different oxidants under different atmospheric conditions. A total of 412 unknown parameters (product yields of parameterized products, reaction rates, etc.) from the SUVS are estimated by using genetic algorithms operating on the detailed mechanism. The number of organic species was reduced from 310 in the detailed mechanism to 31 in the SUVS. Output species profiles, obtained from the original subset of the MCM reaction scheme for α-pinene oxidation, are reproduced with maximum fractional error at 0.10 for scenarios under a wide range of ambient HC/NO<sub>x</sub> conditions. Ultimately, the same SUVS with updated parameters could be used to describe the SOA formation from different precursors

    Loss of ATRX does not confer susceptibility to osteoarthritis

    Get PDF
    The chromatin remodelling protein ATRX is associated with the rare genetic disorder ATR-X syndrome. This syndrome includes developmental delay, cognitive impairment, and a variety of skeletal deformities. ATRX plays a role in several basic chromatin-mediated cellular events including DNA replication, telomere stability, gene transcription, and chromosome congression and cohesion during cell division. We have used a loss-of-function approach to directly investigate the role of Atrx in the adult skeleton in three different models of selective Atrx loss. We specifically targeted deletion of Atrx to the forelimb mesenchyme, to cartilage and to bone-forming osteoblasts. We previously demonstrated that loss of ATRX in forelimb mesenchyme causes brachydactyly while deletion in chondrocytes had minimal effects during development. We now show that targeted deletion of Atrx in osteoblasts causes minor dwarfism but does not recapitulate most of the skeletal phenotypes seen in ATR-X syndrome patients. In adult mice from all three models, we find that joints lacking Atrx are not more susceptible to osteoarthritis, as determined by OARSI scoring and immunohistochemistry. These results indicate that while ATRX plays limited roles during early stages of skeletal development, deficiency of the protein in adult tissues does not confer susceptibility to osteoarthritis. © 2013 Solomon et al

    Loss of ATRX does not confer susceptibility to osteoarthritis

    Get PDF
    The chromatin remodelling protein ATRX is associated with the rare genetic disorder ATR-X syndrome. This syndrome includes developmental delay, cognitive impairment, and a variety of skeletal deformities. ATRX plays a role in several basic chromatin-mediated cellular events including DNA replication, telomere stability, gene transcription, and chromosome congression and cohesion during cell division. We have used a loss-of-function approach to directly investigate the role of Atrx in the adult skeleton in three different models of selective Atrx loss. We specifically targeted deletion of Atrx to the forelimb mesenchyme, to cartilage and to bone-forming osteoblasts. We previously demonstrated that loss of ATRX in forelimb mesenchyme causes brachydactyly while deletion in chondrocytes had minimal effects during development. We now show that targeted deletion of Atrx in osteoblasts causes minor dwarfism but does not recapitulate most of the skeletal phenotypes seen in ATR-X syndrome patients. In adult mice from all three models, we find that joints lacking Atrx are not more susceptible to osteoarthritis, as determined by OARSI scoring and immunohistochemistry. These results indicate that while ATRX plays limited roles during early stages of skeletal development, deficiency of the protein in adult tissues does not confer susceptibility to osteoarthritis. © 2013 Solomon et al

    The effect of meteorological and chemical factors on the agreement between observations and predictions of fine aerosol composition in southwestern Ontario during BAQS-Met

    Get PDF
    The Border Air Quality and Meteorology Study (BAQS-Met) was an intensive, collaborative field campaign during the summer of 2007 that investigated the effects of transboundary pollution, local pollution, and local meteorology on air quality in southwestern Ontario. This analysis focuses on the measurements of the inorganic constituents of particulate matter with diameter of less than 1 μm (PM<sub>1</sub>), with a specific emphasis on nitrate. We evaluate the ability of AURAMS, Environment Canada's chemical transport model, to represent regional air pollution in SW Ontario by comparing modelled aerosol inorganic chemical composition with measurements from Aerosol Mass Spectrometers (AMS) onboard the National Research Council (NRC) of Canada Twin Otter aircraft and at a ground site in Harrow, ON. The agreement between modelled and measured <i>p</i>NO<sub>3</sub><sup>−</sup> at the ground site (observed mean (M<sub>obs</sub>) = 0.50 μg m<sup>−3</sup>; modelled mean (M<sub>mod</sub>) = 0.58 μg m<sup>−3</sup>; root mean square error (RSME) = 1.27 μg m<sup>−3</sup>) was better than aloft (M<sub>obs</sub> = 0.32 μg m<sup>−3</sup>; M<sub>mod</sub> = 0.09 μg m<sup>−3</sup>; RSME = 0.48 μg m<sup>−3</sup>). Possible reasons for discrepancies include errors in (i) emission inventories, (ii) atmospheric chemistry, (iii) predicted meteorological parameters, or (iv) gas/particle thermodynamics in the model framework. Using the inorganic thermodynamics model, ISORROPIA, in an offline mode, we find that the assumption of thermodynamic equilibrium is consistent with observations of gas and particle composition at Harrow. We develop a framework to assess the sensitivity of PM<sub>1</sub> nitrate to meteorological and chemical parameters and find that errors in both the predictions of relative humidity and free ammonia (FA ≡ NH<sub>3</sub><sub>(g)</sub> + <i>p</i>NH<sub>4</sub><sup>+</sup> − 2 · <i>p</i>SO<sub>4</sub><sup>2-</sup>) are responsible for the poor agreement between modelled and measured values

    Affine modifications and affine hypersurfaces with a very transitive automorphism group

    Full text link
    We study a kind of modification of an affine domain which produces another affine domain. First appeared in passing in the basic paper of O. Zariski (1942), it was further considered by E.D. Davis (1967). The first named author applied its geometric counterpart to construct contractible smooth affine varieties non-isomorphic to Euclidean spaces. Here we provide certain conditions which guarantee preservation of the topology under a modification. As an application, we show that the group of biregular automorphisms of the affine hypersurface X⊂Ck+2X \subset C^{k+2} given by the equation uv=p(x1,...,xk)uv=p(x_1,...,x_k) where p∈C[x1,...,xk],p \in C[x_1,...,x_k], acts m−m-transitively on the smooth part regXX of XX for any m∈N.m \in N. We present examples of such hypersurfaces diffeomorphic to Euclidean spaces.Comment: 39 Pages, LaTeX; a revised version with minor changes and correction

    Evaluation of chemical transport model predictions of primary organic aerosol for air masses classified by particle component-based factor analysis

    Get PDF
    Observations from the 2007 Border Air Quality and Meteorology Study (BAQS-Met 2007) in Southern Ontario, Canada, were used to evaluate predictions of primary organic aerosol (POA) and two other carbonaceous species, black carbon (BC) and carbon monoxide (CO), made for this summertime period by Environment Canada's AURAMS regional chemical transport model. Particle component-based factor analysis was applied to aerosol mass spectrometer measurements made at one urban site (Windsor, ON) and two rural sites (Harrow and Bear Creek, ON) to derive hydrocarbon-like organic aerosol (HOA) factors. A novel diagnostic model evaluation was performed by investigating model POA bias as a function of HOA mass concentration and indicator ratios (e.g. BC/HOA). Eight case studies were selected based on factor analysis and back trajectories to help classify model bias for certain POA source types. By considering model POA bias in relation to co-located BC and CO biases, a plausible story is developed that explains the model biases for all three species. <br></br> At the rural sites, daytime mean PM<sub>1</sub> POA mass concentrations were under-predicted compared to observed HOA concentrations. POA under-predictions were accentuated when the transport arriving at the rural sites was from the Detroit/Windsor urban complex and for short-term periods of biomass burning influence. Interestingly, the daytime CO concentrations were only slightly under-predicted at both rural sites, whereas CO was over-predicted at the urban Windsor site with a normalized mean bias of 134%, while good agreement was observed at Windsor for the comparison of daytime PM<sub>1</sub> POA and HOA mean values, 1.1 μg m<sup>−3</sup> and 1.2 μg m<sup>−3</sup>, respectively. Biases in model POA predictions also trended from positive to negative with increasing HOA values. Periods of POA over-prediction were most evident at the urban site on calm nights due to an overly-stable model surface layer. This model behaviour can be explained by a combination of model under-estimation of vertical mixing at the urban location, under-representation of PM emissions for on-road traffic exhaust along major urban roads and highways, and a more structured allocation of area POA sources such as food cooking and dust emissions to urban locations. A downward trend in POA bias was also observed at the urban site as a function of the BC/HOA indicator ratio, suggesting a possible association of POA under-prediction with under-representation of diesel combustion sources. An investigation of the emission inventories for the province of Ontario and the nearby US state of Indiana also suggested that the top POA area emission sources (food cooking, organic-bound to dust, waste disposal burning) dominated over mobile and point sources, again consistent with a mobile under-estimation. <br></br> We conclude that more effort should be placed at reducing uncertainties in the treatment of several large POA emission sources, in particular food cooking, fugitive dust, waste disposal burning, and on-road traffic sources, and especially their spatial surrogates and temporal profiles. This includes using higher spatial resolution model grids to better resolve the urban road network and urban food cooking locations. We also recommend that additional sources of urban-scale vertical mixing in the model, such as a stronger urban heat island effect and vehicle-induced turbulence, would help model predictions at urban locations, especially at night time

    Aircraft study of the impact of lake-breeze circulations on trace gases and particles during BAQS-Met 2007

    Get PDF
    High time-resolved aircraft data, concurrent surface measurements and air quality model simulations were explored to diagnose the processes influencing aerosol chemistry under the influence of lake-breeze circulations in a polluted region of southwestern Ontario, Canada. The analysis was based upon horizontal aircraft transects conducted at multiple altitudes across an entire lake-breeze circulation. Air mass boundaries due to lake-breeze fronts were identified in the aircraft meteorological and chemical data, which were consistent with the frontal locations determined from surface analyses. Observations and modelling support the interpretation of a lake-breeze circulation where pollutants were lofted at a lake-breeze front, transported in the synoptic flow, caught in a downdraft over the lake, and then confined by onshore flow. The detailed analysis led to the development of conceptual models that summarize the complex 3-D circulation patterns and their interaction with the synoptic flow. The identified air mass boundaries, the interpretation of the lake-breeze circulation, and the air parcel circulation time in the lake-breeze circulation (3.0 to 5.0 h) enabled formation rates of organic aerosol (OA/ΔCO) and SO<sub>4</sub><sup>2−</sup> to be determined. The formation rate for OA (relative to excess CO in ppmv) was found to be 11.6–19.4 μg m<sup>−3</sup> ppmv<sup>−1</sup> h<sup>−1</sup> and the SO<sub>4</sub><sup>2−</sup> formation rate was 5.0–8.8% h<sup>−1</sup>. The formation rates are enhanced relative to regional background rates implying that lake-breeze circulations are an important dynamic in the formation of SO<sub>4</sub><sup>2−</sup> and secondary organic aerosol. The presence of cumulus clouds associated with the lake-breeze fronts suggests that these enhancements could be due to cloud processes. Additionally, the effective confinement of pollutants along the shoreline may have limited pollutant dilution leading to elevated oxidant concentrations

    Emissions preparation and analysis for multiscale air quality modeling over the Athabasca Oil Sands Region of Alberta, Canada

    Get PDF
    The oil sands (OS) of Alberta, Canada, which are classified as unconventional oil, are the third-largest oil reserves in the world. We describe here a 6-year effort to improve the emissions data used for air quality (AQ) modeling of the roughly 100&thinsp;km&thinsp; × &thinsp;100&thinsp;km oil extraction and processing industrial complex operating in the Athabasca Oil Sands Region (AOSR) of northeastern Alberta. This paper reviews the national, provincial, and sub-provincial emissions inventories that were available during the three phases of the study, supplemented by hourly SO2 and NOx emissions and stack characteristics for larger point sources measured by a continuous emission monitoring system (CEMS), as well as daily reports of SO2 from one AOSR facility for a 1-week period during a 2013 field campaign when the facility experienced upset conditions. Next it describes the creation of several detailed hybrid emissions inventories and the generation of model-ready emissions input files for the Global Environmental Multiscale–Modelling Air quality and CHemistry (GEM-MACH) AQ modeling system that were used during the 2013 field study and for various post-campaign GEM-MACH sensitivity studies, in particular for a high-resolution model domain with 2.5&thinsp;km grid spacing covering much of western Canada and centered over the AOSR. Lastly, it compares inventory-based bottom-up emissions with aircraft-observation-based top-down emissions estimates. Results show that emissions values obtained from different data sources can differ significantly, such as a possible 10-fold difference in PM2.5 emissions and approximately 40 and 20&thinsp;% differences for total VOC (volatile organic compound) and SO2 emissions. A novel emissions-processing approach was also employed to allocate emissions spatially within six large AOSR mining facilities in order to address the urban-scale spatial extent of the facilities and the high-resolution 2.5&thinsp;km model grid. Gridded facility- and process-specific spatial surrogate fields that were generated using spatial information from GIS (geographic information system) shapefiles and satellite images were used to allocate non-smokestack emissions for each facility to multiple grid cells instead of treating these emissions as point sources and allocating them to a single grid cell as is normally done. Facility- and process-specific temporal profiles and VOC speciation profiles were also developed. The pre-2013 vegetation and land-use databases normally used to estimate biogenic emissions and meteorological surface properties were modified to account for the rapid change in land use in the study area due to marked, year-by-year changes in surface mining activities, including the 2013 opening of a new mine. Lastly, mercury emissions data were also processed in addition to the seven criteria-air-contaminant (CAC) species (NOx, VOC, SO2, NH3, CO, PM2.5, and PM10) to support AOSR mercury modeling activities. Six GEM-MACH modeling papers in this special issue used some of these new sets of emissions and land-use input files.</p

    Evaluation of the possibility of using diatomite natural mineral as a composite agent in acrylic coating

    Get PDF
    WOS: 000427736200014In the present study the possibility of the commercially available acryl and diatomite earth (DE) mineral as a composite coating for corrosion protection of Mg alloys has been evaluated. The acrylic coating is used as a top coating in a wide field of applications like automotive, aerospace, medicine and electronics where it shows beneficial properties. Diatomite-dispersed acrylic paint was applied over the substrate by conventional spray technique with an air pressure of 3 kg cm(-2). Firstly the acryl was mixed with hardener and then the DE was added to the mixture. Four types of coating with 0, 2, 4, 8 g/L DE have been prepared. The results show that adding up to 4 g/L of the DE improved the corrosion resistance and produced a coating with acceptable surface roughness
    • …
    corecore