3,903 research outputs found

    Speaking the same language: developing a language-aware feedback culture

    Get PDF
    Research suggests that feedback as part of assessment is often not delivered effectively. A key aspect of effective feedback delivery is that students need to understand feedback and also feel motivated to act on it. This article explores how educational developers can incorporate a language-aware approach to feedback when working with staff involved in learning and teaching in order to enable staff to make appropriate linguistic choices when providing feedback so that it is more comprehensible and motivational for students. It describes a piece of action research which explored and evaluated two teaching activities used on a PG Cert HE with staff at a post-1992 university, designed to promote critical awareness of the language used when giving feedback. We report on the staff evaluation of the activities devised and piloted, and consider how this project could be taken forward in future

    An investigation into the dialectic of Academic Teaching Identity: Some preliminary findings [Presentation]

    Get PDF
    Presented at the International Annual Research Conference, 07-09 Dec 2016, Celtic Manor, Newport in South Wales, United Kingdom

    Cartan's spiral staircase in physics and, in particular, in the gauge theory of dislocations

    Full text link
    In 1922, Cartan introduced in differential geometry, besides the Riemannian curvature, the new concept of torsion. He visualized a homogeneous and isotropic distribution of torsion in three dimensions (3d) by the "helical staircase", which he constructed by starting from a 3d Euclidean space and by defining a new connection via helical motions. We describe this geometric procedure in detail and define the corresponding connection and the torsion. The interdisciplinary nature of this subject is already evident from Cartan's discussion, since he argued - but never proved - that the helical staircase should correspond to a continuum with constant pressure and constant internal torque. We discuss where in physics the helical staircase is realized: (i) In the continuum mechanics of Cosserat media, (ii) in (fairly speculative) 3d theories of gravity, namely a) in 3d Einstein-Cartan gravity - this is Cartan's case of constant pressure and constant intrinsic torque - and b) in 3d Poincare gauge theory with the Mielke-Baekler Lagrangian, and, eventually, (iii) in the gauge field theory of dislocations of Lazar et al., as we prove for the first time by arranging a suitable distribution of screw dislocations. Our main emphasis is on the discussion of dislocation field theory.Comment: 31 pages, 8 figure

    Foreword

    Get PDF
    This work reports on the performances of ohmic contacts fabricated on highly p-type doped 4H-SiC epitaxial layer selectively grown by vapor-liquid-solid transport. Due to the very high doping level obtained, the contacts have an ohmic behavior even without any annealing process. Upon variation of annealing temperatures, it was shown that both 500 and 800 °C annealing temperature lead to a minimum value of the Specific Contact Resistance (SCR) down to 1.3×10−6 Ω⋅cm2. However, a large variation of the minimum SCR values has been observed (up to 4×10−4 Ω⋅cm2). Possible sources of this fluctuation have been also discussed in this paper

    Surface waves on a quantum plasma half-space

    Full text link
    Surface modes are coupled electromagnetic/electrostatic excitations of free electrons near the vacuum-plasma interface and can be excited on a sufficiently dense plasma half-space. They propagate along the surface plane and decay in either sides of the boundary. In such dense plasma models, which are of interest in electronic signal transmission or in some astrophysical applications, the dynamics of the electrons is certainly affected by the quantum effects. Thus, the dispersion relation for the surface wave on a quantum electron plasma half-space is derived by employing the quantum hydrodynamical (QHD) and Maxwell-Poison equations. The QHD include quantum forces involving the Fermi electron temperature and the quantum Bohm potential. It is found that, at room temperature, the quantum effects are mainly relevant for the electrostatic surface plasma waves in a dense gold metallic plasma

    HAT-P-49b: A 1.7 M_J Planet Transiting a Bright 1.5 M_S F-Star

    Full text link
    We report the discovery of the transiting extrasolar planet HAT-P-49b. The planet transits the bright (V = 10.3) slightly evolved F-star HD 340099 with a mass of 1.54M_S and a radius of 1.83 R_S. HAT-P-49b is orbiting one of the 25 brightest stars to host a transiting planet which makes this a favorable candidate for detailed follow-up. This system is an especially strong target for Rossiter- McLaughlin follow-up due to the fast rotation of the host star, 16 km/s. The planetary companion has a period of 2.6915 d, mass of 1.73 M_J and radius of 1.41 R_J. The planetary characteristics are consistent with that of a classical hot Jupiter but we note that this is the fourth most massive star to host a transiting planet with both M_p and R_p well determined.Comment: Accepted to the Astronomical Journa

    Methoden zur Analyse der vokalen Gestaltung populärer Musik

    Get PDF
    Although voice and singing play a crucial role in many genres of popular music, to date there are only few approaches to an in-depth exploration of vocal expression. The paper aims at presenting new ways for describing, analysing and visualizing several aspects of singing using computer-based tools. After outlining a theoretical framework for the study of voice and singing in popular music, some of those tools are introduced and exemplified by vocal recordings from various genres (blues, gospel music, country music, jazz). Firstly, pitch gliding (slurs, slides, bends, melismas) and vibrato are discussed referring to a computer-based visualization of pitch contour. Secondly, vocal timbre and phonation (e.g. vocal roughness) are explored and visualized using spectrograms
    • …
    corecore