747 research outputs found

    Building Blocks in Hierarchical Clustering Scenarios and their Connection with Damped Lyα\alpha Systems

    Get PDF
    We carried out a comprehensive analysis of the chemical properties of the interstellar medium (ISM) and the stellar population (SP) of current normal galaxies and their progenitors in a hierarchical clustering scenario. We compared the results with observations of Damped Lyman-α\alpha systems (DLAs) under the hypothesis that, at least, part of the observed DLAs could originate in the building blocks of today normal galaxies. We used a hydrodynamical cosmological code which includes star formation and chemical enrichment. Galaxy-like objects are identified at z=0z=0 and then followed back in time. Random line-of-sights (LOS) are drawn through these structures in order to mimic Damped Lyman α\alpha systems. We then analysed the chemical properties of the ISM and SP along the LOS. We found that the progenitors of current galaxies in the field with mean L<0.5L∗L <0.5 L^* and virial circular velocity of 100−250km/sec100-250 {\rm km/sec} could be the associated DLA galaxies. For these systems we detected a trend for to increase with redshift.(Abridged)Comment: 15 pages, 11 Postscript figures. Accepted to MNRA

    Chemo-Archaeological Downsizing in a Hierarchical Universe: Impact of a Top Heavy IGIMF

    Get PDF
    We make use of a semi-analytical model of galaxy formation to investigate the origin of the observed correlation between [a/Fe] abundance ratios and stellar mass in elliptical galaxies. We implement a new galaxy-wide stellar initial mass function (Top Heavy Integrated Galaxy Initial Mass Function, TH-IGIMF) in the semi-analytic model SAG and evaluate its impact on the chemical evolution of galaxies. The SFR-dependence of the slope of the TH-IGIMF is found to be key to reproducing the correct [a/Fe]-stellar mass relation. Massive galaxies reach higher [a/Fe] abundance ratios because they are characterized by more top-heavy IMFs as a result of their higher SFR. As a consequence of our analysis, the value of the minimum embedded star cluster mass and of the slope of the embedded cluster mass function, which are free parameters involved in the TH-IGIMF theory, are found to be as low as 5 solar masses and 2, respectively. A mild downsizing trend is present for galaxies generated assuming either a universal IMF or a variable TH-IGIMF. We find that, regardless of galaxy mass, older galaxies (with formation redshifts > 2) are formed in shorter time-scales (< 2 Gyr), thus achieving larger [a/Fe] values. Hence, the time-scale of galaxy formation alone cannot explain the slope of the [a/Fe]-galaxy mass relation, but is responsible for the big dispersion of [a/Fe] abundance ratios at fixed stellar mass.We further test the hyphothesis of a TH-IGIMF in elliptical galaxies by looking into mass-to-light ratios, and luminosity functions. Models with a TH-IGIMF are also favoured by these constraints. In particular, mass-to-light ratios agree with observed values for massive galaxies while being overpredicted for less massive ones; this overprediction is present regardless of the IMF considered.Comment: 24 pages, 15 figures, 2 tables. (Comments most welcome). Summited to MNRA

    Nitrogen Abundances in DLA Systems: The Combined Effects of SNII and SNIa in a Hierarchical Clustering Scenario

    Get PDF
    The combined enrichment of Supernovae II and I in a hierarchical clustering scenario could produce regions with low N content respect to α\alpha-elements consistent with observed values measured in Damped Ly-α\alpha (DLAs). We have studied the formation of DLAs in a hierarchical clustering scenario under the hypothesis that the building blocks of current field galaxies could be part of the structures mapped by DLAs. In our models the effects of the non-linear evolution of the structure (which produces bursty star formation histories, gas infall, etc.) and the contributions of SNIa and SNII are found to be responsible of producing these N regions with respect to the α\alpha-elements. Although SNIa are not main production sites for Si or O, because of the particular timing Consistently, we found the simulated low nitrogen DLAs to have sub-solar [Fe/H]. We show that low nitrogen DLAs have experienced important star formation activity in the past with higher efficiency than normal DLAs. Our chemical model suggests that SNIa play a relevant role in the determination of the abundance pattern of DLA and, that the observed low nitrogen DLA frequency could be explained taking into account the time-delay of ≈\approx 0.5 Gyr introduced by these supernova to release metals.Comment: 4 pages, 2 Postscript figures. Accepted for publication in MNRAS (pink pages

    A fitting formula for the merger timescale of galaxies in hierarchical clustering

    Full text link
    We study galaxy mergers using a high-resolution cosmological hydro/N-body simulation with star formation, and compare the measured merger timescales with theoretical predictions based on the Chandrasekhar formula. In contrast to Navarro et al., our numerical results indicate, that the commonly used equation for the merger timescale given by Lacey and Cole, systematically underestimates the merger timescales for minor mergers and overestimates those for major mergers. This behavior is partly explained by the poor performance of their expression for the Coulomb logarithm, \ln (m_pri/m_sat). The two alternative forms \ln (1+m_pri/m_sat) and 1/2\ln [1+(m_pri/m_sat)^2] for the Coulomb logarithm can account for the mass dependence of merger timescale successfully, but both of them underestimate the merger time scale by a factor 2. Since \ln (1+m_pri/m_sat) represents the mass dependence slightly better we adopt this expression for the Coulomb logarithm. Furthermore, we find that the dependence of the merger timescale on the circularity parameter \epsilon is much weaker than the widely adopted power-law \epsilon^{0.78}, whereas 0.94*{\epsilon}^{0.60}+0.60 provides a good match to the data. Based on these findings, we present an accurate and convenient fitting formula for the merger timescale of galaxies in cold dark matter models.Comment: 16 pages, 14 figures, accepted for publication in ApJ, minor changes in the last few sentences of the discussio

    Combining exposure indicators and predictive analytics for threats detection in real industrial IoT sensor networks

    Get PDF
    We present a framework able to combine exposure indicators and predictive analytics using AI-tools and big data architectures for threats detection inside a real industrial IoT sensors network. The described framework, able to fill the gaps between these two worlds, provides mechanisms to internally assess and evaluate products, services and share results without disclosing any sensitive and private information. We analyze the actual state of the art and a possible future research on top of a real case scenario implemented into a technological platform being developed under the H2020 ECHO project, for sharing and evaluating cybersecurity relevant informations, increasing trust and transparency among different stakeholders

    Van der Waals and Graphene-Like Layers of Silicon Nitride and Aluminum Nitride

    Get PDF
    A systematic study of kinetics and thermodynamics of Si (111) surface nitridation under ammonia exposure is presented. The appeared silicon nitride (8 × 8) structure is found to be a metastable phase. Experimental evidences of graphene-like nature of the silicon nitride (8 × 8) structure are presented. Interlayer spacings in the (SiN)2(AlN)4 structure on the Si (111) surface are found equal to 3.3 Å in SiN and 2.86 Å in AlN. These interlayer spacings correspond to weak van der Waals interaction between layers. In contrast to the widely accepted model of a surface structure (8 × 8) as monolayer of β-Si3N4 on Si (111) surface, we propose a new graphene-like Si3N4 (g-Si3N3 and/or g-Si3N4) model for the (8 × 8) structure. It is revealed that the deposition of Al atoms on top of a highly ordered (8 × 8) structure results in graphene-like AlN (g-AlN) layers formation. The g-AlN lattice constant of 3.08 Å is found in a good agreement with the ab initio calculations. A transformation of the g-AlN to the bulk-like wurtzite AlN is analyzed
    • …
    corecore