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Abstract— we present a framework able to combine 

exposure indicators and predictive analytics using AI-tools and 

big data architectures for threats detection inside a real 

industrial IoT sensors network. The described framework, able 

to fill the gaps between these two worlds, provides mechanisms 

to internally assess and evaluate products, services and share 

results without disclosing any sensitive and private 

information. We analyze the actual state of the art and a 

possible future research on top of a real case scenario 

implemented into a technological platform being developed 

under the H2020 ECHO project, for sharing and evaluating 

cybersecurity relevant informations, increasing trust and 

transparency among different stakeholders. 
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I. INTRODUCTION 

For the cybersecurity management and implementation, 
many frameworks and standards have been implemented at 
sectoral, national, international and global levels. These 
frameworks and standards propose guidelines that can be 
adopted, voluntarily and according to needs, by owners and 
operators of critical infrastructures. Their goal is to allow the 
identification, evaluation and management of cyber risks. 
Most security professionals mainly use qualitative and 
subjective approaches, depending on opinions, insights, type 
and complexity of organization and ICT infrastructure. But, 
in order to see how much an infrastructure is "compliant" 
with standards and best practices, it remains a strong need for 
independent quantitative measures of network security.  
Having metrics on IoT sensor networks provides quantitative 
indicators and enhance them to use predictive analytics, 
allowing more knowledge and control on the security of the 
network and on the connected devices. According to the 
priority areas [18] identified by the European Cyber Security 
Organization (ECSO), we developed a framework able to 
automate threats exposure evaluation during the entire life 
cycle of a product/service, improving preventive capabilities 
by integrating AI-based tools for a continuous evaluation of 
security functionalities and of the impact of updates, real-
time assessment and patching. One of the expected 
benefit/impact achieved is the increasing of end-users trust 
by providing a harmonized vision of cybersecurity risks and 
traceability of threats evaluation and assessment along the 
supply chain. The framework supports every organization 
(SMEs included) in terms of awareness-raising and relevance 
of "security by design". In practice raises the bar of the 

security baseline by stimulating competition and better 
services for the market with less vulnerable products and 
services deployed. The main idea of this framework is to 
collect all the opportunities that a hypothetical attacker might 
exploit, seeing all the possible ways to gain access to the 
target network. We will show how to effectively prevent 
attacks by reducing both the attack surface and the attack 
susceptibility. A metric, collected over time, makes it 
possible to run comparisons on historical data to properly 
interpret and control the behavior of a process. At the same 
time, by leveraging such data within an unsupervised 
classification algorithm (such as K-Means), we can predict 
threats with a higher level of confidence. The computation 
and therefore the prediction allowed by such a metric, helps 
to define the adequate countermeasures. 

II. STATE OF THE ART 

In literature there are numerous metrics recently proposed for 

the measurement of information and network security. The 

study was done by Weintraub, and Cohoe [1] aims to reduce 

the uncertainty often linked to risk assessment by proposing 

objective, quantitative and real-time information that 

compromises the system's availability. This study has two 

limitations: the first is the feasibility of graph management 

that describes the real-time status of each component and its 

interrelations with other components, including all the safety 

features. The second limitation refers to the various possible 

connections between two nodes. In fact, there might be types 

of connection that do not transfer the attacker to other 

connected nodes. This problem is a limitation of this model 

and is also a research problem.  The work of Simon Enoch 

Yusuf's research group [2] proposes a systematic 

classification of existing security metrics, based on 

information on the network reachability. The mentioned 

work classifies security metrics as either host-based or 

network-based. Host-based metrics are categorized as either 

"unlikely" or "with probability" metrics, while network-

based metrics are classified as either "path-based" or "not 

based on the path". Indeed, there is a rich literature about 

graph-based metrics and methodologies [3], [4], [5], [6], [7]. 

Yusuf's work also presents and describes an approach for 

developing composite security metrics and calculations using 

a hierarchical Attack Representation Model via a sample 

network. This metric does not consider dynamic security 

metrics. Another method for quantifying the security level of 
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IT networks is that devised by Rashid Munir and others [20]. 

By electronically scanning the network, using the 

vulnerability scanning tool, the level of vulnerability in each 

node is identified and classified according to the Common 

Standards of the Vulnerability Scoring System (critical, 

severe and moderate). Subsequently, the probabilistic 

arguments are then applied to calculate a level of the overall 

security risk for subnets. Unfortunately, this methodology 

lacks scalability and automaticity of the solution, 

fundamental for having reliable real-time measurements, as 

well as a method able to inject generated traffic on the 

network. The Center for Internet Security (CIS) also found 

itself facing the problem of the lack of widely accepted and 

unambiguous metrics for decision support in the network 

security field [21]. The CIS work provides a set of standard 

metrics and data definitions that can be used between 

organizations to collect and analyze data on performances 

and results of security processes. Again, this is a simple 

descriptive solution. Regarding compliances, there are still 

numerous proposals. The framework uses a risk-based 

approach to manage cybersecurity risks and is composed by 

three parts: a core, the implementation tier, and the profiles 

[22]. It is useful to underline that being compliant does not 

mean taking the safety. As regarding the use of Big Data 

analytics and artificial intelligence technologies, Retting et 

al.[15] describes and empirically evaluates an online 

anomaly detection pipeline based on Kafka queues and Spark 

Streaming in order to detect anomalies in Mobile Network 

using Relative Entropy and Pearson correlation. Hsieh et al 

[16] proposed DDoS detection based on Neural Networks 

implemented using  Apache Spark clusters. They proposed a 

system architecture composed by different layers, starting 

from a packet collector and storing them in a Hadoop HDFS 

file system in pcap format. These packets are subsequently 

converted into text files and features are extracted according 

to the same source and destination IPs, ready to be 

processed by the neural network. To evaluate their solution, 

they use DARPA LLDOS datasets like attack traffic, and 

generate normal traffic using an external application. 

Mylavarapu et al. [17] proposed a real-time hybrid intrusion 

detection system using Apache Storm, to run two neural 

networks: CC4 for anomaly-based detection and a Multi 

Layer Perceptron for misuse-based detection. The final 

output of the two Neural Network is handled by a Post-

Process unit that gives the classification in the final stage. 

III. FRAMEWORK DESCRIPTION 

The environment of our framework is based on two 
mixed-devices test networks which are generally used as test 
environments for research and development goals, belonging 
to an Italian company. The entire company network is 
segmented into sub-networks to serve five sites, on which we 
distributed intrusion detection probes based on an Open 
Source IDS (Fig. 1): a Workstation Network, called Network 
1, and a Server Network, called Network 2, both hosting 
heterogeneous IoT devices. 

The dataset used was obtained from test networks described 

below through February 18
th
 and February 20

th
 2019 for the 

first run and through February 25
th
 and February 27

th
 2019 

for the second run. These time windows cover workdays 

(Monday - Wednesday) and work hours (8:00 – 18:30). The 

data alerts were generated from the probes with these 

percentages: 

 

 Downadup/Conficker Worm reporting (75%) [9] 

 Generic Suspicious Post to Dotted Quad with Fake 

Browser (5%) [10] 
 NETBIOS Stack Overflow Inbound (9%) [11] 

 Possible Bad Tunnel for AutoProxy request (3%) [12] 

 Non-compliant DNS traffic on DNS Port reserved bit 

set (5%) [13] 

 Potential Scan due to unusual Port 445 and 139 traffic 

(0,4%) [14] 

 Cleartext passwords (0,2%) 

 Other (2,4%) 

 

The alerts are spread in the following priorities (starting 

from the dangerous one): 

 

 Critical (90%) 

 Severe (6%) 

 High (4%) 

 

It is also important to say that the potential attacks able to 

steal data from the private network (e.g. Conficker malware) 

were blocked by Company perimetric Firewall. 

 

 

Fig. 1.  Test Environment 

We divided our exposure indicators into two groups: 
Attack Surface and Network Susceptibility. The first group 
includes all the metrics that measure the physical and logical 
surface that could be subject to a generic attack. 

In details, these metrics are: 

 Detected Active Hosts (DAH): is a metric that 

indicates the percentage of systems in the monitored 

network that was actively detected during the 

measurement period, and it says how wide it is the 

attackable surface at the network level; 

 

 Host to Host Interaction (HTHI): is a metric that 

indicates the established interactions seen during the 

measurement period and it says how wide is the 

network level attackable surface related to the kind of 

interactions, considering that an attacker can easily use 
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an already established interaction to launch an attack 

inside the network; 

 

 Services Percentage (SP): is a metric that indicates the 

exploitable ports to launch an attack, and indicates how 

big is the transport level attackable surface. It is a 

combination of the Server Services (SS) and Client 

Services (CS) metrics. 

 
The second group is characterized by all the metrics that 
provide a weakness indication of a part or of the whole 
Attack Surface. Thus, the second group provides a necessary 
but not sufficient condition for an attack to occur, so we put 
our focus on attack surfaces.   

In details, these metrics are: 

 Threat level (TL): is a metric that indicates the 

common hazard of interactions that generate an IDS 

alert, considering established interactions more 

dangerous than new interactions, that in turn are 

considered riskier than closed interactions. Every IDS 

alert has a priority from 1 (critical) to 5 (low), so TL1 

will have a more significant weight than TL5; 

 

 Severity Average (SA): is a metric that indicates the 

average severity of the alerts detected, and it helps 

evaluate the threat exposure; 

 

 Alerts Number (AN): is a metric that indicates how 

many alerts have been detected; 

 

Alerted Hosts Percentage (AHP): is a metric that 

describes the percentage of hosts in the managed 

network that has been involved in alerts during the 

measurement process. It helps to evaluate how diverse 

is the application layer of the destination infrastructure. 

 
Here are the main features of the traffic collected in the 
network to compute the metrics described below: 

 Source IP address 

 Destination IP address 

 Source port 

 Destination port 

 Timestamp 

 Flow state 

 Alert severity 
 

To define a real traffic pattern, we used two of the six 
days of real NetFlow logs provided by the described testbed, 
considered as normal traffic, i.e. flows that didn't generate 
IDS alarms. The dataset has been split into the following 
percentages: 

 70% for training the framework algorithms 

 15% for validation and thresholds setting 

 15% reserved for testing purpose 
 

Every NetFlow record is composed by the following 
fields: 

Table I. Dataset structure 

Field Description 
flow-id  An identifier of the flow  

host The identifier of the capturing probe  

ip dst The destination IP address of the first packet in the 

flow 

ip src  Source IP address of the first packet in the flow 

port dst Destination port number of the first packet in the flow 

port src  Source port number of the first packet in the flow 

proto Transport-level protocol 

bytes  Total number of flow bytes 

flow bytes 

toclient 

Incoming number of bytes associated with the IP flow 

flow bytes 

toserver 

Outgoing number of bytes associated with the IP flow 

flow pkts 

toclient 

Incoming number of packets associated with the IP 

flow 

flow pkts 

toserver 

Outgoing number of packets associated with the IP 

flow 

flow reason IP flow interruption reason 

flow start IP flow creation time 

tcp flags Cumulative of all current flow TCP flags in both 

directions 

tcp flags tc Cumulative of all current flow TCP flags towards the 

client 

tcp flags ts Cumulative of all current flow TCP flags towards the 

server 

timestamp 

end 

The timestamp of the last packet of the flow 

 

We realized a framework architecture divided into six 
distinct levels, starting from data acquisition up to data 
storage. The framework levels are detailed below: 

• Data acquisition, packets coming from the network 
that are captured by sensors. 

• Data collection, traffic captured by sensors, grouped, 
stored and ready to be processed by the next level. 

• Data preprocessing, data that are aggregated to obtain 
"biflow" streams on which exposure indicators are 
calculated. 

• Features Extraction, "biflow" data which are 
aggregated to obtain the desired set of features and that will 
be used by the threat detection algorithms. 

• Threats Detector, it performs threat detection on the 
captured data traffic using K-Means and a classical Flow-
Based Detector. 

• Data Storage, it stores the results of the detection 
analysis performed and makes them available to the network 
administrator. 

 

 

Fig. 2. Data flow diagram 

The Features Extractor Module provides the following 

extracted features to the algorithm: 
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Table II. Extracted features for K-Means algorithm 

Feature Description 
nPkts  Total number of packets  

nBytes Total Bytes  

nSrc Number of different sources 

nDstP  Number of different destination ports 

 

As aggregation keys we used the following features: 

 

 Destination IP 

 Destination IP, Protocol 

To validate the results obtained by K-Means clustering, we 
tested a function proposed by Myung-Sup Kim et al. [8] to 
detect Scan based on NetFlow fields and some constant 
values. The NetFlow is obtained by grouping packets 
according to the quintuple: 

(src_ip, dst_ip, src_port, dst_port, protocol)  

The Features Extractor Module accepts as input the NetFlow 
and aggregates each biflow according to Destination IP. 
After this aggregation, it processes the features used by the 
Detector Function. 

Table III. Extracted features for Flow-based detection 

Feature Description 

nFlows  The number of connections for a single IP 

destination.  

nSrcIP  The number of distinct Source address toward a 

single IP destination.  

nDstPort  The number of different Destination Port toward a 

single IP destination.  

sumFlowSize  Sum of total Bytes toward a single IP destination.  

avgFlowSize  Average of total Bytes toward a single IP destination.  

devFlowSize  Standard Deviation of total Bytes toward a single IP 

destination.  

sumNumPkts  Sum of the total number of packets in a forward 

direction toward a single IP destination.  

avgNumPkts  Average of the total number of packets in a forward 

direction toward a single IP destination.  

devNumPkts  Standard Deviation of the total number of packets in 

a forward direction toward a single IP destination.  

These features are the input for the Threat Detector Module, 
which computes an Anomaly Score defined as: 

𝒇𝑺𝒄𝒂𝒏 = 𝒗𝒏𝑭𝒍𝒐𝒘𝒔 ∗ 𝜶𝒏𝑭𝒍𝒐𝒘𝒔 + 𝒗𝒇𝒍𝒐𝒘𝑺𝒊𝒛𝒆 ∗ 𝜶𝒇𝒍𝒐𝒘𝑺𝒊𝒛𝒆 + 𝒗𝒏𝑷𝒌𝒕𝒔 
∗ 𝜶𝒏𝑷𝒌𝒕𝒔 + 𝒗𝒏𝑺𝒓𝒄𝑰𝑷 ∗ 𝜶𝒏𝑺𝒓𝒄𝑰𝑷 + 𝒗𝒏𝑫𝒔𝒕𝑷𝒐𝒓𝒕 ∗ 𝜶𝒏𝑫𝒔𝒕𝑷𝒐𝒓𝒕       (2) 

A weight is associated with each feature, which can be 
considered as the main marker in the detection of that 
particular class of attack, normalized by a specific threshold 
value associated with the feature, and in particular we have 
that: 

 𝒗𝒏𝑭𝒍𝒐𝒘𝒔 = 𝒏𝑭𝒍𝒐𝒘𝒔/𝑻𝒏𝑭𝒍𝒐𝒘    (3) 

 𝒗𝒇𝒍𝒐𝒘𝑺𝒊𝒛𝒆 = 𝑻𝒂𝒗𝒈𝑭𝒍𝒐𝒘𝑺𝒊𝒛𝒆/𝒂𝒗𝒈𝑭𝒍𝒐𝒘𝑺𝒊𝒛𝒆   (4) 

 𝒗𝒏𝑷𝒌𝒕𝒔 = 𝑻𝒂𝒗𝒈𝑵𝒖𝒎𝑷𝒌𝒕𝒔/𝒂𝒗𝒈𝑵𝒖𝒎𝑷𝒌𝒕𝒔   (5) 

 𝒗𝒏𝑺𝒓𝒄𝑰𝑷 = 𝑻𝒏𝑺𝒓𝒄𝒔𝑰𝑷/𝒏𝑺𝒓𝒄𝑰𝑷    (6) 

 𝒗𝒏𝑫𝒔𝒕𝑷𝒐𝒓𝒕 = 𝒏𝑫𝒔𝒕𝑷𝒐𝒓𝒕/𝑻𝒏𝑫𝒔𝒕𝑷𝒐𝒓𝒕   (7) 

IV. RESULTS  

In Fig. 3 we report the trend of the Attack Surface 
metrics detected by active hosts percentage, open server and 
client services percentage and established interactions 
percentage. On the x-axis of the graphs is present the number 
of the tests in a range (1.. 30): each interval of five tests 
refers to a test day. On the y-axis are present the percentage 
values of the relative metrics. Starting from the graphs is 
possible to understand that the described trends are not 
constant. They follow the trends of network traffic during a 
day, repeating, in a similar way, the other time frames in 
which the tests were performed.  

 

DAH SS CS HTHI AHP AN TL1 TL2 TL3 TL4 TL5 SA 

69.55 48.74 34.72 45.00 1.32 68.07 1.10 0.38 1.44 0 0 4.62 

 

 

Fig. 3. Network 1 Mean Results & Attack Surface Metrics 

In Fig. 4 it is clear that the four metrics of Network 2, 
relative to the Attack Surface, take low values. Furthermore, 
all the metrics belonging to this group assume a behavior 
over time that has an almost constant profile. From this, it 
can be deduced that the Server Network 2 attack surface 
profile is relatively limited and with almost a consistent 
behavior. 

 

DAH SS CS HTHI AHP AN TL1 TL2 TL3 TL4 TL5 SA 

8.74 4.36 4.84 7.83 0.26 0.93 0.10 0 1.10 0 0 1.73 

 

 

Fig. 4.  Network 2 Mean Results & Attack Surface Metrics 

In Fig. 5, the threat detector module can be appreciated in 
action, running on the same dataset as Network 1 and 
Network 2 and using K-Means for threats classification.  

In particular, after the training phase, we ran random port 
scans and DoS/DDoS attacks from different nodes of the 
network. 
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The figure shows the results achieved using different 
aggregation keys for each biflow, i.e. (DestinationIP) and 
(DestinationIP, Protocol). In particular, choosing K=2 as a 
number of clusters, and considering (DestinationIP, Protocol) 
as aggregation key, we were unable to achieve a separation 
between anomalous and benign traffic, unlike the case in 
which the only (DestinationIP) is used. 

 

Fig. 5. K-Means in action from the threat detector module  

Fig. 6 shows the results running the flow-based detection 
function in comparison with the normal traffic dataset and 
the attack dataset: 

 

 

Fig. 6.  Results for Flow-Based Detector 

In particular, the threshold value was chosen by applying 
the flow-based detection function on real traffic dataset. The 
graph related to the attack dataset shows how the traffic 
patterns get a higher value of anomaly score than the 
threshold foreseen by the benign traffic pattern 

A statistical view of the anomaly Score for both datasets 
is reported in Table IV. Statistical view of the Anomaly 
Score: 

Table IV. Statistical view of the Anomaly Score 

 Normal-traffic dataset Attack dataset 

Mean  0.5386485087  1.0421997219  

Median 0.4844107364  1.0149445714  

Std Dev 0.2257778374  0.3213015025  

Min  0.0299296001  0.4426064366  

Max 1.7601188363  2.9904500056  

 

In addition to 99-th quantile, many other types of 
thresholds have been assessed. Normal-traffic dataset 
thresholds values and related anomaly percentages are 
reported in Table V: 

Table V. Different thresholds in normal traffic dataset 

Threshold type Threshold value % Anomaly 

95-th Quantile  0.8500092094  4.3557 % 

99-th Quantile 0.9131501428  0.4133 % 

Mean + Std 0.7644263483  25.7330 % 

Mean + 3*Std   1.2159820232  0.0055 % 

Median + Std  0.7091543706  25.9336 % 

Median + 3*Std  1.1602104452  0.0076 % 

 

Table VI shows the attack dataset results: 

Table VI. Different thresholds in attack dataset 

Threshold type Threshold value % Anomaly 

95-th Quantile  0.8500092094  97.9843 % 

99-th Quantile 0.9131501428  97.2004 % 

Mean + Std 0.7644263483  98.4322 % 

Mean + 3*Std   1.2159820232  4.1433 % 

Median + Std  0.7091543706  98.4322 % 

Median + 3*Std  1.1602104452  4.3673 % 

V. APPLICATION SCENARIO 

Currently, the discussed framework is deployed and act 
as an EWS-Plugin, providing its capability to the ECHO 
Early Warning System (EWS). Under the ECHO Project 
founded by the European Union's Horizon 2020 Research 
and Innovation Programme [19], it is implementing the EWS 
to provide secure information sharing, cybersecurity alerts 
and actionable insights to identify, respond, prevent and 
mitigate cybersecurity threats to benefits citizens, companies 
and governments. Several modules compose the EWS-Plugin 
system, and a logic view is represented in Figure 7. The 
Service Manager Console (SMC) is providing platform 
management, common functionalities (IDS rules) and AI-
capabilities with functionalities to present relevant aggregate 
data. Probes are system elements responsible for collecting 
network data traffic from a LAN segment. Probes analyses 
traffic and transmit NetFlow protocol data and IDS alerts 
(from the intrusion detection system) to the Console 
Manager (CM). CM is the local focal point for all data 
collection, processing and correlation ideally located in the 
probes LAN. 

 

 

Figure 7 - ECHO EWS-Plugin 
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Privacy is a big concern inside the ECHO project, and the 
described framework provides flexibility to minimize any 
concern about it. LAN traffic is analyzed in the CM, inside 
the organization security perimeter, and only aggregate 
indicators like CTEI (Cyber Threat Exposure Indicator) are 
sent to other external systems, like E-EWS in a secure way 
over the Internet. 

VI. CONCLUSIONS AND FUTURE RESEARCH 

We presented and tested a framework to automate threats 
exposure and evaluation during the entire life cycle of an 
ICT infrastructure, improving preventive capabilities by 
integrating AI-based tools for continuous evaluation of 
security functionalities and the impact of updates, real-time 
assessment and patching.  

In conclusion, we can say that the definition of a single 
integrated figure describing the security of the network is 
more efficient than relying on several parameters to be 
correlated. With a single reference number, an IoT network 
security operator could instantly understand that something 
went wrong and he could be able to immediately start 
analyzing the reasons that let the overall security fall down. 
Also, we can use the indicator, and its prediction, for two 
different purposes: 

 To continuously monitor a production IoT network 
exposure and find anomaly behaviors if the indicator is 
very far from the mean. 

 To evaluate the impact of active countermeasures to 
improve the security of the IoT network, by measuring 
the difference between the indicator values right before 
and after their application. 

Framework's scalability is also a core aspect of providing 
security evaluation/testing techniques. Time to market and 
cost factors are also critical, especially for SMEs. The 
potentially large number of devices to be evaluated requires 
the design of cost-effective evaluation procedures. These are 
all points that need to be properly addressed in order to 
define any business model to exploit the framework 
potentials. 

The main future target will be the improvement of the 
performances, some of the possible ways to achieve this goal 
are: 

 Building a system that always keeps the IDS rules engine 
updated, mainly to reduce the probability that a 
malicious flow of traffic could be considered normal, 
invalidating the considered dataset; 

 Testing this architecture using more complex algorithms, 
for example those based on Deep Learning and 
Reinforcement Learning, to increase the accuracy and 
the reliability of the obtained results. 
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