21,096 research outputs found
Atmospheric densities from Explorer 17 density gauges and a comparison with satellite drag data
Atmospheric density data from Explorer XVII GAUGES and satellite drag dat
Improved bounds on the set A(A+1)
For a subset A of a field F, write A(A + 1) for the set {a(b + 1):a,b\in A}.
We establish new estimates on the size of A(A+1) in the case where F is either
a finite field of prime order, or the real line.
In the finite field case we show that A(A+1) is of cardinality at least
C|A|^{57/56-o(1)} for some absolute constant C, so long as |A| < p^{1/2}. In
the real case we show that the cardinality is at least C|A|^{24/19-o(1)}. These
improve on the previously best-known exponents of 106/105-o(1) and 5/4
respectively
Efficacy of crustal superfluid neutrons in pulsar glitch models
In order to assess the ability of purely crust-driven glitch models to match
the observed glitch activity in the Vela pulsar, we conduct a systematic
analysis of the dependence of the fractional moment of inertia of the inner
crustal neutrons on the stiffness of the nuclear symmetry energy at saturation
density . We take into account both crustal entrainment and the fact that
only a fraction of the core neutrons may couple to the crust on the
glitch-rise timescale. We use a set of consistently-generated crust and core
compositions and equations-of-state which are fit to results of low-density
pure neutron matter calculations. When entrainment is included at the level
suggested by recent microscopic calculations and the core is fully coupled to
the crust, the model is only able to account for the Vela glitch activity for a
1.4 star if the equation of state is particularly stiff MeV.
However, an uncertainty of about 10\% in the crust-core transition density and
pressure allows for the Vela glitch activity to be marginally accounted for in
the range MeV consistent with a range of experimental results.
Alternatively, only a small amount of core neutrons need be involved. If less
than 50\% of the core neutrons are coupled to the crust during the glitch, we
can also account for the Vela glitch activity using crustal neutrons alone for
EOSs consistent with the inferred range of . We also explore the possibility
of Vela being a high-mass neutron star, and of crustal entrainment being
reduced or enhanced relative to its currently predicted values.Comment: 10 pages, 6 figure
Evaporation of microdroplets of azeotropic liquids
This work reports data showing the evolution of contact angle with time for mixtures of water and 1-propanol at room temperature on poly(methyl methacrylate) (PMMA). The composition range investigated spans the azeotropic composition, thus encompassing systems containing excess water and excess 1-propanol. A discontinuity in the contact angle behavior is observed and it is suggested that this enables the identification of the azeotropic composition as 0.39 mole fraction of 1-propanol. This suggestion is supported by boiling point measurements made at around 20 mmHg. The discontinuity is associated with the presence of an instability, which causes a distortion around the droplet perimeter. It is suggested that the distortion is caused by competing effects of local surface tension maxima and minima
Quantum-state tomography for spin-l systems
We show that the density matrix of a spin-l system can be described entirely
in terms of the measurement statistics of projective spin measurements along a
minimum of 4l+1 different spin directions. It is thus possible to represent the
complete quantum statistics of any N-level system within the spherically
symmetric three dimensional space defined by the spin vector. An explicit
method for reconstructing the density matrix of a spin-1 system from the
measurement statistics of five non-orthogonal spin directions is presented and
the generalization to spin-l systems is discussed.Comment: 10 pages, including 2 tables, minor modifications in section II,
final version for publication in Phys. Rev.
From Microscales to Macroscales in 3D: Selfconsistent Equation of State for Supernova and Neutron Star Models
First results from a fully self-consistent, temperature-dependent equation of
state that spans the whole density range of neutron stars and supernova cores
are presented. The equation of state (EoS) is calculated using a mean-field
Hartree-Fock method in three dimensions (3D). The nuclear interaction is
represented by the phenomenological Skyrme model in this work, but the EoS can
be obtained in our framework for any suitable form of the nucleon-nucleon
effective interaction. The scheme we employ naturally allows effects such as
(i) neutron drip, which results in an external neutron gas, (ii) the variety of
exotic nuclear shapes expected for extremely neutron heavy nuclei, and (iii)
the subsequent dissolution of these nuclei into nuclear matter. In this way,
the equation of state is calculated across phase transitions without recourse
to interpolation techniques between density regimes described by different
physical models. EoS tables are calculated in the wide range of densities,
temperature and proton/neutron ratios on the ORNL NCCS XT3, using up to 2000
processors simultaneously.Comment: 6 pages, 11 figures. Published in conference proceedings Journal of
Physics: Conference Series 46 (2006) 408. Extended version to be submitted to
Phys. Rev.
Pulse mode operation of Love wave devices for biosensing applications
In this work we present a novel pulse mode Love wave biosensor that monitors both changes in amplitude and phase. A series of concentrations of 3350 molecular weight poly(ethylene glycol) (PEG) solutions are used as a calibration sequence for the pulse mode system using a network analyzer and high frequency oscilloscope. The operation of the pulse mode system is then compared to the continuous wave network analyzer by showing a sequence of deposition and removal of a model mass layer of palmitoyl-oleoyl-sn-glycerophosphocholine (POPC) vesicles. This experimental apparatus has the potential for making many hundreds of measurements a minute and so allowing the dynamics of fast interactions to be observed
Deconstructing triplet nucleon-nucleon scattering
Nucleon-nucleon scattering in spin-triplet channels is analysed within an
effective field theory where one-pion exchange is treated nonperturbatively.
Justifying this requires the identification of an additional low-energy scale
in the strength of that potential. Short-range interactions are organised
according to the resulting power counting, in which the leading term is
promoted to significantly lower order than in the usual perturbative counting.
In each channel there is a critical momentum above which the waves probe the
singular core of the tensor potential and the new counting is necessary. When
the effects of one- and two-pion exchange have been removed using a
distorted-wave Born approximation, the residual scattering in waves with L<=2
is well described by the first three terms in the new counting. In contrast,
the scattering in waves with L>=3 is consistent with the perturbative counting,
at least for energies up to 300 MeV. This pattern is in agreement with
estimates of the critical momenta in these channels.Comment: 13 pages, RevTeX, 8 figures, minor clarifications adde
- …
