4,202 research outputs found

    Experimental evidence of planar channeling in a periodically bent crystal

    Get PDF
    The usage of a Crystalline Undulator (CU) has been identified as a promising solution for generating powerful and monochromatic γ\gamma-rays. A CU was fabricated at SSL through the grooving method, i.e., by the manufacturing of a series of periodical grooves on the major surfaces of a crystal. The CU was extensively characterized both morphologically via optical interferometry at SSL and structurally via X-ray diffraction at ESRF. Then, it was finally tested for channeling with a 400 GeV/c proton beam at CERN. The experimental results were compared to Monte Carlo simulations. Evidence of planar channeling in the CU was firmly observed. Finally, the emission spectrum of the positron beam interacting with the CU was simulated for possible usage in currently existing facilities

    Uhlenbeck-Donaldson compactification for framed sheaves on projective surfaces

    Full text link
    We construct a compactification MμssM^{\mu ss} of the Uhlenbeck-Donaldson type for the moduli space of slope stable framed bundles. This is a kind of a moduli space of slope semistable framed sheaves. We show that there exists a projective morphism γ ⁣:MssMμss\gamma \colon M^{ss} \to M^{\mu ss}, where MssM^{ss} is the moduli space of S-equivalence classes of Gieseker-semistable framed sheaves. The space MμssM^{\mu ss} has a natural set-theoretic stratification which allows one, via a Hitchin-Kobayashi correspondence, to compare it with the moduli spaces of framed ideal instantons.Comment: 18 pages. v2: a few very minor changes. v3: 27 pages. Several proofs have been considerably expanded, and more explanations have been added. v4: 28 pages. A few minor changes. Final version accepted for publication in Math.

    Meson vacuum phenomenology in a three-flavor linear sigma model with (axial-)vector mesons

    Full text link
    We study scalar, pseudoscalar, vector, and axial-vector mesons with non-strange and strange quantum numbers in the framework of a linear sigma model with global chiral U(Nf)L×U(Nf)RU(N_f)_L \times U(N_f)_R symmetry. We perform a global fit of meson masses, decay widths, as well as decay amplitudes. The quality of the fit is, for a hadronic model that does not consider isospin-breaking effects, surprisingly good. We also investigate the question whether the scalar qˉq\bar{q}q states lie below or above 1 GeV and find the scalar states above 1 GeV to be preferred as qˉq\bar{q}q states. Additionally, we also describe the axial-vector resonances as qˉq\bar{q}q states.Comment: 29 pages, 4 figures, 3 tables. v2 is the updated version after referee remarks (dilaton field discussed, a new figure added

    Moduli of mathematical instanton vector bundles with odd c_2 on projective space

    Full text link
    The problem of irreducibility of the moduli space I_n of rank-2 mathematical instanton vector bundles with arbitrary positive second Chern class n on the projective 3-space is considered. The irreducibility of I_n was known for small values of n: Barth 1977 (n=1), Hartshorne 1978 (n=2), Ellingsrud and Stromme 1981 (n=3), Barth 1981 (n=4), Coanda, Tikhomirov and Trautmann 2003 (n=5). In this paper we prove the irreducibility of I_n for an arbitrary odd n.Comment: 62 page

    Predictability in the large: an extension of the concept of Lyapunov exponent

    Full text link
    We investigate the predictability problem in dynamical systems with many degrees of freedom and a wide spectrum of temporal scales. In particular, we study the case of 3D3D turbulence at high Reynolds numbers by introducing a finite-size Lyapunov exponent which measures the growth rate of finite-size perturbations. For sufficiently small perturbations this quantity coincides with the usual Lyapunov exponent. When the perturbation is still small compared to large-scale fluctuations, but large compared to fluctuations at the smallest dynamically active scales, the finite-size Lyapunov exponent is inversely proportional to the square of the perturbation size. Our results are supported by numerical experiments on shell models. We find that intermittency corrections do not change the scaling law of predictability. We also discuss the relation between finite-size Lyapunov exponent and information entropy.Comment: 4 pages, 2 Postscript figures (included), RevTeX 3.0, files packed with uufile

    Fast photoprocesses in a symmetric indotricarbocyanine dye (hitc) in solutions

    Get PDF
    Spectral-kinetic and photochemical properties of HITC dye with iodide and perchlorate counterions have been studied in environments where the dye molecules exist in different ionic forms. In ethanol, the dye molecules exist as free ions; in dichlorobenzene, as contact ion pairs. Superfast transformation of non-stationary spectra in an HITC dye bleaching band is found. The observed effects are interpreted within the framework of concepts on "burning out" a notch in the contour of a non-uniformly widened vibronic band of S0 → S1-absorption. Qualitative differences in recorded absorption spectra from the dye excited electronic states for weakly and highly polar solvents are found. It is shown that the observed differences are caused by superfast charge transfer in the contact ion pairs that results in the formation of free radicals

    Pedogenesis and carbon sequestration in transformed agricultural soils of Sicily

    Get PDF
    The increasing atmospheric CO2 concentration is a consequence of human activities leading to severe environmental deteriorations. Techniques are thus needed to sequester and reduce atmospheric carbon. One of the proposed techniques is the transformation or construction of new soils into which more organic carbon can be sequestered and CO2 be consumed by increased weathering. By using a chronosequence of new and transformed soils on crushed limestone (0–48 years) in a Mediterranean area (Sicily), we tried to quantify the amount of organic carbon that could be additionally sequestered and to derive the corresponding rates. A further aim was to trace chemical weathering and related CO2 consumption and the evolution of macropores that are relevant for water infiltration and plant nutrition. Owing to the irrigation of the table grape cultivation, the transformed soils developed fast. After about 48 years, the organic C stocks were near 12 kg m−2. The average org. C sequestration rates varied between 68 and 288 g m−2 yr−1. The C accumulation rates in the transformed soils are very high at the beginning and tend to decrease over (modelled) longer time scales. Over these 48 years, a substantial amount of carbonate was leached and reprecipitated as secondary carbonates. The proportion of secondary carbonates on the total inorganic carbon was up to 50%. Main mineralogical changes included the formation of interstratified clay minerals, the decrease of mica and increase of chloritic components as well as goethite. The atmospheric CO2 consumption due to silicate weathering was in the range of about 44–72 g C m−2 yr−1. Due to the high variability, the contribution of chemical weathering to CO2 consumption represents only an estimate. When summing up organic C sequestration and CO2 consumption by silicate weathering, rates in the order of 110–360 g C m−2 yr−1 are obtained. These are very high values. We estimated that high sequestration and CO2 consumption rates are maintained for about 50–100 years after soil transformation. The macropore volume decreased over the observed time span to half (from roughly 10 to 5 %). The transformation of soils may even amend their characteristics and increase agricultural production. Due to the relatively sandy character, enough macropores were present and no substantial compaction of the soils occurred. However, great caution has to be taken as such measures can trigger deterioration of both soil ecosystem services and soil quality
    corecore