430 research outputs found

    Mechanisms controlling the volume of pleural fluid and extravascular lung water

    Get PDF
    Pleural and interstitial lung fluid volumes are strictly controlled and maintained at the minimum thanks to the ability of lymphatics to match the increase in filtration rate. In the pleural cavity, fluid accumulation is easily accommodated by retraction of lung and chest wall (high compliance of the pleural space); the increase of lymph flow per unit increase in pleural fluid volume is high due to the great extension of the parietal lymphatic. However, for the lung interstitium, the increase in lymph flow to match increased filtration does not need to be so great. In fact, increased filtration only causes a minor increase in extravascular water volume (<10%) due to a marked increase in interstitial pulmonary pressure (low compliance of the extracellular matrix) which, in turn, buffers further filtration. Accordingly, a less extended lymphatic network is needed. The efficiency of lymphatic control is achieved through a high lymphatic conductance in the pleural fluid and through a low interstitial compliance for the lung interstitium. Fluid volume in both compartments is so strictly controlled that it is difficult to detect initial deviations from the physiological state; thus, a great physiological advantage turns to be a disadvantage on a clinical basis as it prevents an early diagnosis of developing disease

    Translocation pathways for inhaled asbestos fibers

    Get PDF
    We discuss the translocation of inhaled asbestos fibers based on pulmonary and pleuro-pulmonary interstitial fluid dynamics. Fibers can pass the alveolar barrier and reach the lung interstitium via the paracellular route down a mass water flow due to combined osmotic (active Na+ absorption) and hydraulic (interstitial pressure is subatmospheric) pressure gradient. Fibers can be dragged from the lung interstitium by pulmonary lymph flow (primary translocation) wherefrom they can reach the blood stream and subsequently distribute to the whole body (secondary translocation). Primary translocation across the visceral pleura and towards pulmonary capillaries may also occur if the asbestos-induced lung inflammation increases pulmonary interstitial pressure so as to reverse the trans-mesothelial and trans-endothelial pressure gradients. Secondary translocation to the pleural space may occur via the physiological route of pleural fluid formation across the parietal pleura; fibers accumulation in parietal pleura stomata (black spots) reflects the role of parietal lymphatics in draining pleural fluid. Asbestos fibers are found in all organs of subjects either occupationally exposed or not exposed to asbestos. Fibers concentration correlates with specific conditions of interstitial fluid dynamics, in line with the notion that in all organs microvascular filtration occurs from capillaries to the extravascular spaces. Concentration is high in the kidney (reflecting high perfusion pressure and flow) and in the liver (reflecting high microvascular permeability) while it is relatively low in the brain (due to low permeability of blood-brain barrier). Ultrafine fibers (length < 5 μm, diameter < 0.25 μm) can travel larger distances due to low steric hindrance (in mesothelioma about 90% of fibers are ultrafine). Fibers translocation is a slow process developing over decades of life: it is aided by high biopersistence, by inflammation-induced increase in permeability, by low steric hindrance and by fibers motion pattern at low Reynolds numbers; it is hindered by fibrosis that increases interstitial flow resistances

    First record of Hemidiaptomus (Gigantodiaptomus) superbus (Schmeil, 1895) in Italy, with notes on distribution and conservation status (Copepoda, Calanoida, Diaptomidae)

    Get PDF
    Hemidiaptomus (Gigantodiaptomus) superbus (Schmeil, 1895) was found in a temporary pool in the Pineta di Classe coastal pine-wood (Ravenna, northern Italy). This is the first official record of a species belonging to the subgenus Gigantodiaptomus of Italian fauna, and it widens the known distribution of this rare diaptomid to the Mediterranean basin. In order to supply data on this rare and poorly known species, original drawings for the Italian population have been provided, and some overlooked morphological features have been highlighted. In light of the growing evidence of the existence of a number of cryptic species in the Diaptomidae family, and considering the variability observed in the ornamentation of the fifth pair of female legs, the ribosomal DNA marker 16S was used to compare the specimens collected in Italy with those from the terra typica of the species. Molecular data confirmed the strict conspecificity of the two populations being studied. The environmental parameters relating to the new Italian site are described and compared with the few data currently available in the literature. A careful review of all the published data dealing with H. (G.) superbus has been performed, and the paucity of recent records is stressed, together with the opportunity to support dedicated conservation measures for the protection of this species

    Near infrared spectroscopy (NIRS) as a new non-invasive tool to detect oxidative skeletal muscle impairment in children survived to acute lymphoblastic leukaemia

    Get PDF
    BACKGROUND: Separating out the effects of cancer and treatment between central and peripheral components of the O2 delivery chain should be of interest to clinicians for longitudinal evaluation of potential functional impairment in order to set appropriate individually tailored training/rehabilitation programmes. We propose a non-invasive method (NIRS, near infrared spectroscopy) to be used in routine clinical practice to evaluate a potential impairment of skeletal muscle oxidative capacity during exercise in children previously diagnosed with acute lymphoblastic leukaemia (ALL). The purpose of this study was to evaluate the capacity of skeletal muscle to extract O2 in 10 children diagnosed with ALL, 1 year after the end of malignancy treatment, compared to a control group matched for gender and age (mean±SD = 7.8±1.5 and 7.3±1.4 years, respectively). METHODS AND FINDINGS: Participants underwent an incremental exercise test on a treadmill until exhaustion. Oxygen uptake ([Formula: see text]), heart rate (HR), and tissue oxygenation status (Δ[HHb]) of the vastus lateralis muscle evaluated by NIRS, were measured. The results showed that, in children with ALL, a significant linear regression was found by plotting [Formula: see text] vs Δ[HHb] both measured at peak of exercise. In children with ALL, the slope of the HR vs [Formula: see text] linear response (during sub-maximal and peak work rates) was negatively correlated with the peak value of Δ[HHb]. CONCLUSIONS: The present study proves that the NIRS technique allows us to identify large inter-individual differences in levels of impairment in muscle O2 extraction in children with ALL. The outcome of these findings is variable and may reflect either muscle atrophy due to lack of use or, in the most severe cases, an undiagnosed myopathy

    From morphological heterogeneity at alveolar level to the overall mechanical lung behavior: an in vivo microscopic imaging study.

    Get PDF
    In six male anesthetized, tracheotomized, and mechanically ventilated rabbits, we imaged subpleural alveoli under microscopic view (60×) through a "pleural window" obtained by stripping the endothoracic fascia and leaving the parietal pleura intact. Three different imaging scale levels were identified for the analysis on increasing stepwise local distending pressure (P ld) up to 16.5 cmH2O: alveoli, alveolar cluster, and whole image field. Alveolar profiles were manually traced, clusters of alveoli of similar size were identified through a contiguity-constrained hierarchical agglomerative clustering analysis and alveolar surface density (ASD) was estimated as the percentage of air on the whole image field. Alveolar area distributions were remarkably right-skewed and showed an increase in median value with a large topology-independent heterogeneity on increasing P ld. Modeling of alveolar area distributions on increasing P ld led to hypothesize that absolute alveolar compliance (change in surface area over change in P ld) increases fairly linearly with increasing initial alveolar size, the corollary of this assumption being a constant specific compliance. Clusters were reciprocally interweaved due to their highly variable complex shapes. ASD was found to increase with a small coefficient of variation (CV <25\%) with increasing P ld. The CV of lung volume at each transpulmonary pressure was further decreased (about 6\%). The results of the study suggest that the considerable heterogeneity of alveolar size and of the corresponding alveolar mechanical behavior are homogenously distributed, resulting in a substantially homogenous mechanical behavior of lung units and whole organ

    Stability, Structure and Scale: Improvements in Multi-modal Vessel Extraction for SEEG Trajectory Planning

    Get PDF
    Purpose Brain vessels are among the most critical landmarks that need to be assessed for mitigating surgical risks in stereo-electroencephalography (SEEG) implantation. Intracranial haemorrhage is the most common complication associated with implantation, carrying signi cant associated morbidity. SEEG planning is done pre-operatively to identify avascular trajectories for the electrodes. In current practice, neurosurgeons have no assistance in the planning of electrode trajectories. There is great interest in developing computer assisted planning systems that can optimise the safety pro le of electrode trajectories, maximising the distance to critical structures. This paper presents a method that integrates the concepts of scale, neighbourhood structure and feature stability with the aim of improving robustness and accuracy of vessel extraction within a SEEG planning system. Methods The developed method accounts for scale and vicinity of a voxel by formulating the problem within a multi-scale tensor voting framework. Feature stability is achieved through a similarity measure that evaluates the multi-modal consistency in vesselness responses. The proposed measurement allows the combination of multiple images modalities into a single image that is used within the planning system to visualise critical vessels. Results Twelve paired datasets from two image modalities available within the planning system were used for evaluation. The mean Dice similarity coe cient was 0.89 ± 0.04, representing a statistically signi cantly improvement when compared to a semi-automated single human rater, single-modality segmentation protocol used in clinical practice (0.80 ±0.03). Conclusions Multi-modal vessel extraction is superior to semi-automated single-modality segmentation, indicating the possibility of safer SEEG planning, with reduced patient morbidity

    Translocation pathways for inhaled asbestos fibers

    Get PDF
    We discuss the translocation of inhaled asbestos fibers based on pulmonary and pleuro-pulmonary interstitial fluid dynamics. Fibers can pass the alveolar barrier and reach the lung interstitium via the paracellular route down a mass water flow due to combined osmotic (active Na+ absorption) and hydraulic (interstitial pressure is subatmospheric) pressure gradient. Fibers can be dragged from the lung interstitium by pulmonary lymph flow (primary translocation) wherefrom they can reach the blood stream and subsequently distribute to the whole body (secondary translocation). Primary translocation across the visceral pleura and towards pulmonary capillaries may also occur if the asbestos-induced lung inflammation increases pulmonary interstitial pressure so as to reverse the trans-mesothelial and trans-endothelial pressure gradients. Secondary translocation to the pleural space may occur via the physiological route of pleural fluid formation across the parietal pleura; fibers accumulation in parietal pleura stomata (black spots) reflects the role of parietal lymphatics in draining pleural fluid. Asbestos fibers are found in all organs of subjects either occupationally exposed or not exposed to asbestos. Fibers concentration correlates with specific conditions of interstitial fluid dynamics, in line with the notion that in all organs microvascular filtration occurs from capillaries to the extravascular spaces. Concentration is high in the kidney (reflecting high perfusion pressure and flow) and in the liver (reflecting high microvascular permeability) while it is relatively low in the brain (due to low permeability of blood-brain barrier). Ultrafine fibers (length < 5 μm, diameter < 0.25 μm) can travel larger distances due to low steric hindrance (in mesothelioma about 90% of fibers are ultrafine). Fibers translocation is a slow process developing over decades of life: it is aided by high biopersistence, by inflammation-induced increase in permeability, by low steric hindrance and by fibers motion pattern at low Reynolds numbers; it is hindered by fibrosis that increases interstitial flow resistances

    A small slug from a tropical greenhouse reveals a new rathouisiid lineage with triaulic tritrematic genitalia (Gastropoda: Systellommatophora)

    Get PDF
    A small slug found in the tropical greenhouse of the Science Museum (MUSE) of Trento (Italy) turned out to be a species of the little-known systellommatophoran family Rathouisiidae. We undertook detailed comparative anatomical and molecular studies using specimens of the MUSE slug, Rathouisia sinensis, and sequences of other systellommatophoran species deposited in GenBank to conduct a systematic and phylogenetic assessment. Analysis of the genitalia of the MUSE slug and R. sinensis revealed an unusual triaulic tritrematic structure: two separate female ducts – one for egg release (oviduct), the other for intake of allosperm (vagina) – and a separate male duct for autosperm release. Analysis of the nucleotide sequences of several mitochondrial (COI, 16S rDNA) and nuclear (18S rDNA, ITS2 flanked by 5.8S and 28S rDNA fragments, H3) gene fragments supported assignation of the MUSE slug to Rathouisiidae, but also its distinction from the other rathouisiid genera Atopos, Granulilimax, Rathouisia and an undescribed genus from the Ryukyu Islands (Japan). Therefore, we decided to describe the MUSE slug as a new species in a new genus: Barkeriella museensis gen. et sp. nov. The species is certainly an alien introduced into the tropical greenhouse of MUSE, but its origin is unknown and calls for further investigation. © 2022 The Linnean Society of London

    A Pipeline for 3D Multimodality Image Integration and Computer-assisted Planning in Epilepsy Surgery

    Get PDF
    Epilepsy surgery is challenging and the use of 3D multimodality image integration (3DMMI) to aid presurgical planning is well-established. Multimodality image integration can be technically demanding, and is underutilised in clinical practice. We have developed a single software platform for image integration, 3D visualization and surgical planning. Here, our pipeline is described in step-by-step fashion, starting with image acquisition, proceeding through image co-registration, manual segmentation, brain and vessel extraction, 3D visualization and manual planning of stereoEEG (SEEG) implantations. With dissemination of the software this pipeline can be reproduced in other centres, allowing other groups to benefit from 3DMMI. We also describe the use of an automated, multi-trajectory planner to generate stereoEEG implantation plans. Preliminary studies suggest this is a rapid, safe and efficacious adjunct for planning SEEG implantations. Finally, a simple solution for the export of plans and models to commercial neuronavigation systems for implementation of plans in the operating theater is described. This software is a valuable tool that can support clinical decision making throughout the epilepsy surgery pathway
    corecore