300 research outputs found

    Inflammation and cardiovascular diseases: lessons from seminal clinical trials.

    Get PDF
    Abstract Inflammation has been long regarded as a key contributor to atherosclerosis. Inflammatory cells and soluble mediators play critical roles throughout arterial plaque development and accordingly, targeting inflammatory pathways effectively reduces atherosclerotic burden in animal models of cardiovascular (CV) diseases. Yet, clinical translation often led to inconclusive or even contradictory results. The Canakinumab Anti-inflammatory Thrombosis Outcome Study (CANTOS) followed by the Colchicine Cardiovascular Outcomes Trial (COLCOT) were the first two randomized clinical trials to convincingly demonstrate the effectiveness of specific anti-inflammatory treatments in the field of CV prevention, while other phase III trials—including the Cardiovascular Inflammation Reduction Trial one using methotrexate—were futile. This manuscript reviews the main characteristics and findings of recent anti-inflammatory Phase III trials in cardiology and discusses their similarities and differences in order to get further insights into the contribution of specific inflammatory pathways on CV outcomes. CANTOS and COLCOT demonstrated efficacy of two anti-inflammatory drugs (canakinumab and colchicine, respectively) in the secondary prevention of major adverse CV events (MACE) thus providing the first confirmation of the involvement of a specific inflammatory pathway in human atherosclerotic CV disease (ASCVD). Also, they highlighted the NOD-, LRR-, and pyrin domain-containing protein 3 inflammasome-related pathway as an effective therapeutic target to blunt ASCVD. In contrast, other trials interfering with a number of inflammasome-independent pathways failed to provide benefit. Lastly, all anti-inflammatory trials underscored the importance of balancing the risk of impaired host defence with an increase in infections and the prevention of MACE in CV patients with residual inflammatory risk

    Cytokines as therapeutic targets for cardio- and cerebrovascular diseases

    Full text link
    Despite major advances in prevention and treatment, cardiac and cerebral atherothrombotic complications still account for substantial morbidity and mortality worldwide. In this context, inflammation is involved in the chronic process leading atherosclerotic plaque formation and its complications, as well as in the maladaptive response to acute ischemic events. For this reason, modulation of inflammation is nowadays seen as a promising therapeutic strategy to counteract the burden of cardio- and cerebrovascular disease. Being produced and recognized by both inflammatory and vascular cells, the complex network of cytokines holds key functions in the crosstalk of these two systems and orchestrates the progression of atherothrombosis. By binding to membrane receptors, these soluble mediators trigger specific intracellular signaling pathways eventually leading to the activation of transcription factors and a deep modulation of cell function. Both stimulatory and inhibitory cytokines have been described and progressively reported as markers of disease or interesting therapeutic targets in the cardiovascular field. Nevertheless, cytokine inhibition is burdened by harmful side effects that will most likely prevent its chronic use in favor of acute administrations in well-selected subjects at high risk. Here, we summarize the current state of knowledge regarding the modulatory role of cytokines on atherosclerosis, myocardial infarction, and stroke. Then, we discuss evidence from clinical trials specifically targeting cytokines and the potential implication of these advances into daily clinical practice

    Electrodeposition from Deep Eutectic Solvents

    Get PDF
    Deep eutectic solvents constitute a class of compounds sharing many similarities with properly named ionic liquids. The accepted definition of ionic liquid is a fluid (liquid for T<100 °C) consisting of ions, while DES are eutectic mixtures of Lewis or Brønsted acids and bases. Their most attractive properties are the wide potential windows and the chemical properties largely different from aqueous solutions. In the last few decades, the possibility to electrodeposit decorative and functional coatings employing deep eutectic solvents as electrolytes has been widely investigated. A large number of the deposition procedures described in literature, however, cannot find application in the industrial practice due to competition with existing processes, cost or difficult scalability. From one side, there is the real potential to replace existing plating protocols and to find niche applications for high added-value productions; to the other one, this paves the path towards the electrodeposition of metals and alloys thermodynamically impossible to be obtained via usual aqueous solution processes. The main aim of this chapter is therefore the critical discussion of the applicability of deep eutectic solvents to the electrodeposition of metals and alloys, with a particular attention to the industrial and applicative point of view

    Modern Concepts in Cardiovascular Disease: Inflamm-Aging

    Full text link
    The improvements in healthcare services and quality of life result in a longer life expectancy and a higher number of aged individuals, who are inevitably affected by age-associated cardiovascular (CV) diseases. This challenging demographic shift calls for a greater effort to unravel the molecular mechanisms underlying age-related CV diseases to identify new therapeutic targets to cope with the ongoing aging "pandemic". Essential for protection against external pathogens and intrinsic degenerative processes, the inflammatory response becomes dysregulated with aging, leading to a persistent state of low-grade inflammation known as inflamm-aging. Of interest, inflammation has been recently recognized as a key factor in the pathogenesis of CV diseases, suggesting inflamm-aging as a possible driver of age-related CV afflictions and a plausible therapeutic target in this context. This review discusses the molecular pathways underlying inflamm-aging and their involvement in CV disease. Moreover, the potential of several anti-inflammatory approaches in this context is also reviewed

    Efficacy and fertility outcomes of levonorgestrel-releasing intra-uterine system treatment for patients with atypical complex hyperplasia or endometrial cancer: A retrospective study

    Get PDF
    Objective: To investigate the efficacy of levonorgestrel-releasing intra-uterine system (LNG-IUS) treatment in patients affected by atypical complex hyperplasia/endometrial cancer (ACH/EC) wishing to preserve their fertility and to present fertility outcomes of those patients who actively tried to conceive. Methods: Data of consecutive women with ACH/EC who underwent fertility-sparing treatment using LNG-IUS were retrospectively evaluated. Results: Overall, 48 patients and the mean (\ub1standard deviation) length of follow-up was 82.6\ub147.2 months. Among patients with ACH, 25/28 (89.3%) had a complete response (CR), 2/28 (7.1%) had a partial response (PR) and 1/28 (3.6%) had a progressive disease (PD). Mean (\ub1standard deviation) time to CR was 6.7\ub14.0 months. Among patients with G1 EC, 13/16 (81.3%) had a CR, 1/16 (6.3%) had a PR and 2/16 (12.5%) had a PD. Mean (\ub1standard deviation) time to CR was 5.0\ub12.9 months. Among patients with G2 EC, 3/4 (75.0%) had a CR and 1/4 (25.0%) had a PD. Mean (\ub1standard deviation) time to CR was 4.0\ub10 months. Only 19 (39.6%) patients who had CR actually attempted to conceive. Eleven (57.9%) women tried to conceive naturally while 8 (42.1%) women underwent an in vitro fertilization (IVF). Fourteen (73.7%) patients wishing to conceive achieved a pregnancy (6 spontaneously and 8 through IVF). Conclusions: Fertility-sparing treatment of patient with ACH/EC with LNG-IUS achieves high regression rates and good fertility outcomes. Future larger multi-institutional studies should be designed to confirm these preliminary findings

    Antibody-mediated PCSK9 neutralization worsens outcome after bare-metal stent implantation in mice

    Full text link
    AIMS Despite advances in pharmacotherapy and device innovation, in-stent restenosis (ISR) and stent thrombosis (ST) remain serious complications following percutaneous coronary intervention (PCI) procedure with stent implantation. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an enzyme involved in plasma cholesterol homeostasis and recently emerged as a therapeutic target for hypercholesterolemia. Antibody-based PCSK9 inhibition is increasingly used in different subsets of patients, including those undergoing PCI. However, whether PCSK9 inhibition affects outcome after stent implantation remains unknown. METHODS AND RESULTS 12 to 14 weeks old C57Bl/6 mice underwent carotid artery bare-metal stent implantation. Compared to sham intervention, stent implantation was associated with increased expression of several inflammatory mediators, including PCSK9. The increase in PCSK9 protein expression was confirmed in the stented vascular tissue, but not in plasma. To inhibit PCSK9, alirocumab was administered weekly to mice before stent implantation. After 6 weeks, histological examination revealed increased intimal hyperplasia in the stented segment of alirocumab-treated animals compared to controls. In vitro, alirocumab promoted migration and inhibited the onset of senescence in primary human vascular smooth muscle cells (VSMC). Conversely, it blunted the migration and increased the senescence of endothelial cells (EC). CONCLUSION Antibody-based PCSK9 inhibition promotes in-stent intimal hyperplasia and blunts vascular healing by increasing VSMC migration, while reducing that of EC. This effect is likely mediated, at least in part, by a differential effect on VSMC and EC senescence. The herein-reported data warrant additional investigations concerning the use of PCSK9 inhibitors in patients undergoing PCI with stent implantation

    fMRI Reveals Mitigation of Cerebrovascular Dysfunction by Bradykinin Receptors 1 and 2 Inhibitor Noscapine in a Mouse Model of Cerebral Amyloidosis

    Get PDF
    Functional magnetic resonance imaging (fMRI) techniques can be used to assess cerebrovascular dysfunction in Alzheimer's disease, an important and early contributor to pathology. We hypothesized that bradykinin receptor inhibition alleviates the vascular dysfunction in a transgenic arcA\u3b2 mouse model of cerebral amyloidosis and that fMRI techniques can be used to monitor the treatment response. Transgenic arcA\u3b2 mice, and non-transgenic littermates of 14 months-of-age were either treated with the bradykinin receptors 1 and 2 blocker noscapine or received normal drinking water as control over 3 months (n = 8-11/group) and all mice were assessed using fMRI at the end of the treatment period. Perfusion MRI using an arterial spin labeling technique showed regional hypoperfusion in arcA\u3b2 compared to non-transgenic controls, which was alleviated by noscapine treatment. Similarly, measuring cerebral blood volume changes upon pharmacological stimulation using vessel dilator acetazolamide revealed recovery of regional impairment of cerebral vascular reactivity in arcA\u3b2 mice upon noscapine treatment. In addition, we assessed with immunohistochemistry beta-amyloid (A\u3b2) and inflammation levels in brain sections. Immunohistological stainings for A\u3b2 deposition (6E10) and related microgliosis (Iba1) in the cortex and hippocampus were found comparable between noscapine-treated and untreated arcA\u3b2 mice. In addition, levels of soluble and insoluble A\u3b238, A\u3b240, A\u3b242 were found to be similar in brain tissue homogenates of noscapine-treated and untreated arcA\u3b2 mice using electro-chemiluminescent based immunoassay. In summary, bradykinin receptors blockade recovered cerebral vascular dysfunction in a mouse model of cerebral amyloidosis. fMRI methods revealed the functional deficit in disease condition and were useful tools to monitor the treatment response

    ROS and Lipid Droplet accumulation induced by high glucose exposure in healthy colon and Colorectal Cancer Stem Cells

    Get PDF
    Lipid Droplets (LDs) are emerging as crucial players in colon cancer development and maintenance. Their expression has been associated with high tumorigenicity in Cancer Stem Cells (CSCs), so that they have been proposed as a new functional marker in Colorectal Cancer Stem Cells (CR-CSCs). They are also indirectly involved in the modulation of the tumor microenvironment through the production of pro-inflammatory molecules. There is growing evidence that a possible connection between metabolic alterations and malignant transformation exists, although the effects of nutrients, primarily glucose, on the CSC behavior are still mostly unexplored. Glucose is an essential fuel for cancer cells, and the connections with LDs in the healthy and CSC populations merit to be more deeply investigated. Here, we showed that a high glucose concentration activated the PI3K/AKT pathway and increased the expression of CD133 and CD44v6 CSC markers. Additionally, glucose was responsible for the increased amount of Reactive Oxygen Species (ROS) and LDs in both healthy and CR-CSC samples. We also investigated the gene modulations following the HG treatment and found out that the healthy cell gene profile was the most affected. Lastly, Atorvastatin, a lipid-lowering drug, induced the highest mortality on CR-CSCs without affecting the healthy counterpart

    Effects of acute administration of trimethylamine N-oxide on endothelial function: a translational study

    Full text link
    Elevated circulating levels of nutrient-derived trimethylamine N-oxide (TMAO) have been associated with the onset and progression of cardiovascular disease by promoting athero-thrombosis. However, in conditions like bariatric surgery (Roux-en-Y gastric bypass, RYGB), stable increases of plasma TMAO are associated with improved endothelial function and reduced cardiovascular morbidity and mortality, thus questioning whether a mechanistic relationship between TMAO and endothelial dysfunction exists. Herein, we translationally assessed the effects of acute TMAO exposure on endothelial dysfunction, thrombosis and stroke. After RYGB, fasting circulating levels of TMAO increased in patients and obese rats, in parallel with an improved gluco-lipid profile and higher circulating bile acids. The latter enhanced FXR-dependent signalling in rat livers, which may lead to higher TMAO synthesis post RYGB. In lean rats, acute TMAO injection (7 mg kg−1^{−1}) 1.5-h before sacrifice and ex-vivo 30-min incubation of thoracic aortas with 10−6^{−6} M TMAO did not impair vasodilation in response to acetylcholine (Ach), glucagon-like peptide 1, or insulin. Similarly, in lean WT mice (n = 5–6), TMAO injection prior to subjecting mice to ischemic stroke or arterial thrombosis did not increase its severity compared to vehicle treated mice. Endothelial nitric oxide synthase (eNOS) activity and intracellular stress-activated pathways remained unaltered in aorta of TMAO-injected rats, as assessed by Western Blot. Pre-incubation of human aortic endothelial cells with TMAO (10−6^{−6} M) did not alter NO release in response to Ach. Our results indicate that increased plasmatic TMAO in the near-physiological range seems to be a neutral bystander to vascular function as translationally seen in patients after bariatric surgery or in healthy lean rodent models and in endothelial cells exposed acutely to TMAO
    • …
    corecore