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Abstract 

Inflammation has been long regarded as a key contributor to atherosclerosis. 

Inflammatory cells and soluble mediators play critical roles throughout arterial plaque 

development and accordingly, targeting inflammatory pathways effectively reduces 

atherosclerotic burden in animal models of cardiovascular (CV) diseases. Yet, clinical 

translation often led to inconclusive or even contradictory results. The Canakinumab 

Anti-inflammatory Thrombosis Outcome Study (CANTOS) followed by the Colchicine 

Cardiovascular Outcomes Trial (COLCOT) were the first two randomized clinical 

trials (RCTs) to convincingly demonstrate the effectiveness of specific anti-

inflammatory treatments in the field of CV prevention, while other phase III trials - 

including the Cardiovascular Inflammation Reduction Trial (CIRT) one using 

methotrexate - were futile. This manuscript reviews the main characteristics and 

findings of recent anti-inflammatory phase III trials in cardiology and discusses their 

similarities and differences in order to get further insights into the contribution of 

specific inflammatory pathways on CV outcomes. CANTOS and COLCOT 

demonstrated efficacy of two anti-inflammatory drugs (canakinumab and colchicine, 

respectively) in the secondary prevention of major adverse CV events (MACE) thus 

providing the first confirmation of the involvement of a specific inflammatory pathway 

in human atherosclerotic CV disease (ASCVD). Also, they highlighted the NOD-, 

LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome-related pathway 

as an effective therapeutic target to blunt ASCVD. In contrast, other trials interfering 

with a number of inflammasome-independent pathways failed to provide benefit. 

Lastly, all anti-inflammatory trials underscored the importance of balancing the risk of 

impaired host defence with an increase in infections and the prevention of MACE in 

CV patients with residual inflammatory risk. 
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1. Inflammation and Atherosclerosis 

The inflammatory theory of atherosclerosis emerged in the early 80s after the first 

histological reports of plaque invasion by immune cells 1. After that, a plethora of 

basic and clinical findings have reinforced this hypothesis. To date, all subtypes of 

inflammatory cells have been identified within atherosclerotic lesions isolated from 

experimental models and patients 2-4. Meanwhile macrophage subgroups seem to be 

the first cells to invade early arterial lesions (i.e. fatty streaks) thereby transforming 

into culprit foam cells 5. Later on, also neutrophils and lymphocytes (both T and B 

cells) concur in determining plaque fate (i.e. vulnerability and rupture risk) 6-8. Indeed, 

once in the vessel wall, white blood cells release several mediators with different and 

sometimes opposite effects on plaque stability; such effects span from further 

leukocyte invasion, to oxidative stress 9, matrix degradation by collagenases (i.e. 

metalloproteinases, fibroblast activation protein) 10, vascular smooth muscle cells 

migration and proliferation 11, but also collagen deposition or polarization of 

leukocytes toward anti-inflammatory phenotypes 12. Of interest, inflammatory 

mediators have shown pivotal roles also in determining the latest catastrophic 

thrombotic complications of atherosclerosis, i.e. plaque rupture or erosion and in turn 

myocardial infarction and ischemic stroke 13, 14. Such evidence has prompted the 

clinical evaluation of inflammation as a therapeutic target in an attempt to further 

reduce the burden of cardiovascular (CV) and cerebrovascular (CBV) diseases 15-18. 

Indeed, the encouraging results obtained from basic CV research endorsed their 

ready translation into the clinical setting which unfortunately failed on several 

occasions. This was the case for the inhibitor of purinergic signaling methotrexate 19, 

but also for losmapimod 20, varespladib 21 and darapladip 22, 23: more specific 

inhibitors of p38 mitogen-associated protein (MAP) kinase and the secretory or 
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lipoprotein-associated forms of phospholipase A2 (sPLA2 and Lp-LPA2), respectively 

(Figure 1). Only recently, two randomized clinical trials (RCTs) have confirmed the 

efficacy of specific anti-inflammatory interventions in preventing secondary major 

adverse CV events (MACE) thus confirming the inflammatory theory of 

atherosclerosis in CV patients 24, 25 (Figure 1). This manuscript reviews the main 

characteristics and findings of Canakinumab Anti-inflammatory Thrombosis Outcome 

Study (CANTOS) and Colchicine Cardiovascular Outcomes Trial (COLCOT). 

Similarities and differences among these two RCTs and those reaching neutral 

results will be discussed in order to get further insights into their contribution to 

cardiology.  

 

2. The Canakinumab Anti-inflammatory Thrombosis Outcome Study (CANTOS) 

CANTOS is a double-blind RCT investigating canakinumab, a monoclonal antibody 

specifically inhibiting the function of one of the pro-inflammatory cytokines, interleukin 

1-β (IL-1β) 24. IL-1β was firstly identified as the transferable sterile factor with pyrogen 

function, then it was recognized as the mediator of many processes involved in host 

defense as well as in a variety of pathological conditions 26. Within the atherosclerotic 

plaque, different cell types including endothelial cells, smooth muscle cells and 

immune cells synthetize IL-1β. In their cytoplasm, pro-IL1β is cleaved into its active 

form by cholesterol crystal-dependent assembling of the NOD-, LRR- and pyrin 

domain-containing protein 3 (NLRP3) inflammasome as detailed in paragraph n° 4 27. 

Other stimuli can induce IL-1β synthesis and activation during atherosclerosis 

including other pro-inflammatory cytokines (e.g. tumor necrosis factor-α) 28, oxidative 

stress 29, shear stress 30, hypoxia 31 and neutrophil extracellular traps 32. Once 

activated, IL-1β induces a strong inflammatory response within the vessel wall and 

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/article-abstract/doi/10.1093/cvr/cvaa211/5871502 by U

niversity of Exeter user on 17 July 2020



CVR-2020-0724R1 
 

 5 

fuels a vicious circle involving oxidative stress and cell death. In endothelial cells, this 

cytokine induces the production of adhesion molecules and triggers the expression of 

several chemokines and cytokines (including IL1β itself) resulting in the recruitment 

of circulating leukocytes in the vessel wall 33, 34. Finally IL-1β can modulate the 

endothelial expression of several enzymes involved in reactive oxygen species 

resultin in increased oxidative stress 35. In the media layer of the vessel IL-1β 

induces smooth muscle cell-dependent production of platelet-derived growth factor 

among others involved in their proliferation and migration 36, again processes deeply 

involved in atherogenesis. IL-1β induces the polarization of macrophages towards 

the pro-inflammatory phenotype M1 37, facilitates neutrophil degranulation and NET 

formation 38, 39. Furthermore, IL-1β triggers leukocytes and other cells to produce 

matrix metalloproteinases and other enzymes involved in plaques destabilization as 

well as IL-6 that causes the production of fibrinogen and plasmin activator inhibitor 40, 

41, all mediators involved in the final catastrophic evolution of atherosclerosis: the 

formation of an arterial thrombus. Pro-atherogenic functions of IL-1β have been 

extensively investigated and confirmed in animal experiments: its deficiency or 

inhibition blunts plaque growth in atherosclerotic-prone murine models 42, 43, and the 

repeated injection of the recombinant protein in the perivascular space increased 

intima-media thickness in pigs 44. Canakinumab is an approved treatment for different 

rare conditions where inflammasome is chronically activated including juvenile 

chronic arthritis, familial Mediterranean fever and Muckle-Wellis syndrome 26. In the 

CANTOS trial, 10’061 patients with stable coronary artery disease (CAD) and high-

sensitivity C-reactive protein (hs-CRP) levels >2 mg/L under optimal CV medical 

treatment have been randomized to receive either placebo or the monoclonal anti-IL-

1β antibody. Canakinumab was administered subcutaneously every 3 months at 
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dosages of 50, 150 or 300 mg in three different groups of patients which have been 

followed up for a median period of 3.7 years 24. While the lowest dose did not show 

efficacy as compared to placebo, the two groups receiving canakinumab at a higher 

dosage successfully met the primary composite endpoint including nonfatal 

myocardial infarction, nonfatal stroke, or CV death. Highlighting the specificity of 

these findings, treatment with canakinumab did not affect circulating levels of 

cholesterol, while hs-CRP showed a drastic reduction already after the first 

administration which was maintained along the entire follow-up period 24. Of interest, 

patients with on-treatment levels of hs-CRP<2mg/L were those who benefitted the 

most from the antibody, thus further confirming inflammation as an independent CV 

risk factor 45. Yet, canakinumab slightly increased the risk of infections during the 

follow up. As for adverse events, the canakinumab harm showed higher incidence of 

neutropenia as well as a small, but significant rise in deaths attributed to infections or 

sepsis 24. 

Secondary analyses of results from CANTOS broadened the interest beyond the IL-

1β/MACE connection and highlighted the importance of other IL-1β-related pathways 

in different CV diseases. Such exploratory analyses showed that, among 

downstream mediators of IL-1 signalling, IL-6 might play a role in determining MACE.  

Indeed, among patients treated with canakinumab those who reached lower levels of 

IL-6 after the first treatment were also less likely to experience MACE (baseline IL-6 

was 2.53-2.61 ng/L), hospitalization for unstable angina requiring urgent 

revascularization or to die during the follow-up from CV or all-causes 46. Of note, IL-6 

is highly expressed at the site of coronary occlusion in patients with myocardial 

infarction 47. Furthermore, treatment with canakinumab associated with reduced 

cancer risk and mortality, a finding that opened a new avenue for treatment of cancer 
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patients, specifically those with lung cancer 48. Finally, in CANTOS IL-1β inhibition 

improved gout control (a disease also related to NLRP-3 activation) and dose-

dependently reduced heart failure hospitalization further confirming the role of 

inflammation and specifically of the IL-1 pathway in these conditions 24.   

 

3. Colchicine Cardiovascular Outcomes Trial (COLCOT) 

More recently, the double-blind RCT COLCOT explored the potent anti-inflammatory 

drug colchicine which is currently recommended for the treatment of pericarditis and 

acute gout attacks, but also familial Mediterranean fever and Behçet disease 25. 

Colchicine’s anti-inflammatory properties are known for centuries when extracts of 

the autumn crocus (Colchicum autumnale), where this alkaloid was originally isolated, 

were already used to treat joint swelling. This drug acts on inflammation through 

different mechanisms among which the inhibition of microtubule polymerization by 

binding free tubule dimers, remains the best characterized 49. By doing this, 

colchicine blunts monocyte and neutrophil invasion at the site of the insult, but also 

reduces intracellular trafficking and thus the release of cytokine and production of 

reactive oxygen species and a variety of proteolytic enzymes 50, 51. Only recently 

colchicine was reported to suppress crystal-induced NLRP3 inflammasome activation 

(e.g. by urate crystals) thus reducing the release of pro-inflammatory IL-1β and IL-18, 

a finding which might explain its higher efficacy in diseases mediated by the innate 

immune system as opposed to the adaptive one 52, 53. Furthemore, colchicine inhibits 

endothelial production of IL-1β and adhesion molecules 54, again reducing leukocyte 

vascular invasion. Finally, this drug reduces mast cell and T cell activation 55, 56, it 

hampers smooth muscle cell activation 57, reduces leukocyte-mediated platelet 

activation 58 and blunts the inflammatory response by promoting macrophage shifting 
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towards the healing subtype M2 producing anti-inflammatory IL-10 and transforming 

growth factor (TGF)-β 59. Preclinical evidence of its action on atherosclerosis models 

yelded confilicting results, first experiments on rabbits showed anti-atherosclerotic 

effects when started at the time of high-fat diet 60, such a positive effect was not 

confirmed when administered after plaque development 61, 62.   

COLCOT tested for the first time colchicine at low dosage (0.5 mg per os once daily) 

as compared to placebo in 4’745 patients which suffered a myocardial infarction in 

the 30 days prior to the start of randomization; the median follow up was 1.8 years. 

The rate of the primary composite endpoint (CV death, resuscitated cardiac arrest, 

myocardial infarction, stroke, or urgent hospitalization for angina leading to coronary 

revascularization) was reduced by 23% in the colchicine as compared to the placebo 

group 25. Adverse events or serious adverse events showed similar rates in the two 

groups: the well-known gastrointestinal effects of colchicine which include nausea 

and abdominal discomfort were more frequent in the treatment arm as expected. 

Furthermore, chronic treatment with colchicine increased the frequency of 

pneumonia from 0.4 to 0.9% in COLCOT, however no deaths from infection were 

reported in the study and rates of septic shock in the treatment harm remained low 

and similar to those of the placebo group 25. Although the analyses of the effect of 

colchicine treatment on hs-CRP levels and white blood cells were only available in a 

small subgroup of patients (median hs-CRP 4.28 mg/L), chronic colchicine treatment 

apparently did not associate with a significant reduction of those parameters as 

compared to placebo 25. Finally, no data exploring the effects of such a treatment on 

lipid levels were to date reported, thus preventing any kind of conclusion on the 

specificity of the target.  
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4. Similarities and differences of CANTOS and COLCOT 

CANTOS and COLCOT share similarities but also show important differences (Table 

1) whose analysis may help in drawing conclusions on inflammation as a target for 

CV prevention 63. 

The most obvious analogy between the two studies surely resides in the 

achievement of the primary composite endpoint which was similar and included a 

series of fatal and non-fatal acute CV and CBV events. In COLCOT the primary 

endpoint included hospitalization for unstable angina leading to urgent 

revascularization, while in CANTOS this outcome was only taken into consideration 

for the key secondary CV endpoint which confirmed the superiority of canakinumab 

treatment as compared to placebo in the prevention of CV events. Yet, the 

preliminary analyses of the components of the primary and secondary endpoints 

highlighted how the achieved results are radically different in the two trials. In 

CANTOS, the outcome was mainly driven by reduced rates of myocardial infarction, 

hospitalization for unstable angina leading to urgent revascularization and any 

coronary revascularization suggesting a major effect of such a treatment in the 

coronary circulation with blunted or no effect on the cerebral vasculature 24. By 

contrast, colchicine mainly reduced the incidence of stroke and the frequency of 

urgent hospitalization for angina leading to revascularization 25. Interestingly, similar 

findings on the protective effect of colchicine with respect to CBV events were 

reported in a meta-analysis of four RCTs thus suggesting a specific effect of 

colchicine on cerebral arteries which warrants further investigations 64. Importantly, 

both studies failed to show a significant reduction in CV or all-cause mortality. Yet, in 

CANTOS, in patients achieving an on-treatment hs-CRP levels <2 mg/L, CV mortality 

after 3.7 years follow-up was 31% lower than placebo-treated ones 45. Similarly, the 
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same subjects showed a 31% reduction in all-cause mortality, while effects of 

canakinumab on mortality were limited and nonsignificant among non-responders 45. 

The lack of strong effectiveness on such a hard endpoint will probably hinder the 

routine use of colchicine and canakinumab for CV prevention, especially when taking 

into consideration the increased rates of infections that both treatments entail 24, 25.  

Both trials investigated anti-inflammatory treatments in the setting of secondary CV 

prevention. Indeed, all enrolled patients had clinically overt CAD as they previously 

suffered from myocardial infarction (within 30 days in the COLCOT, not specified in 

the CANTOS). Accordingly, canakinumab and colchicine were added on top of 

optimal medical treatment with antithrombotic agents (95% in CANTOS, ~ 97-98% in 

COLCOT), lipid-lowering agents (93.4% in CANTOS, 99% in COLCOT), anti-

ischemia drugs (91.4% in CANTOS, 88% for only beta-blockers in COLCOT) and 

inhibitors of the renin–angiotensin system (79.7% in CANTOS, not reported in 

COLCOT) 24, 25. Of interest, statins and to a lesser extent proprotein convertase 

subtilisin/kexin type 9 (PCSK9) inhibitors exert anti-inflammatory effects besides their 

actions on lipid levels 65, 66. Indeed, low-density lipoprotein (LDL) cholesterol and 

inflammation show deep interconnections, hypercholesterolemia increases monocyte 

count by acting on cell survival and proliferation and specifically increasing pro-

inflammatory monocyte/macropahge subsets that are known to facilitate plaque 

growth and destabilization 41, 67. Furthermore, by acting on NLRP3 inflammasome 

LDL can induce epigenomic and transcriptional reprogramming of myeloid 

progenitors leading to long-term enhanced innate immune response to different 

stimuli, thus facilitating plaque progression (a process also known as “trained 

immunity”) 68. Thus, the absolute beneficial effects of canakinumab and colchicine on 

plaque inflammation may have been at least in part masked by lipid-lowering agents 
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as their target pathways were already inhibited by such drugs. Yet, specific 

interactions between statins and the IL-1 pathway remain to be fully characterized 

as conflicting results have been reported to date 69. Despite the broad application of 

anti-inflammatory drugs to prevent CV and CBV events remains undoubtedly more 

likely in the setting of secondary prevention, how to pharmacologically cope with the 

inflammation-related risk of primary MACE remains unclear 70-72. This is particularly 

true when considering the recent trials investigating aspirin 73-75, which besides its 

anti-platelet properties also holds anti-inflammatory effects, at least at higher 

dosages 76, 77. Indeed, in ASCEND, ARRIVE and ASPREE trials low-dose aspirin (ca. 

100 mg daily) compared with placebo did not demonstrate CV benefit (reduction in 

myocardial infarction, stroke, or CV mortality), with aspirin treatment even being 

associated with increased risk of all-cause mortality and gastrointestinal 

malignancies in the elderly from ASPREE trial 73-75. Specifically, the elderly may 

represent an interesting population for studying the role of inflammation inhibition on 

primary CV prevention as they show a chronic low-grade persistent increase in levels 

of pro-inflammatory mediators which is accompanied by a blunted inflammatory 

response to appropriate immunogenic triggers 78. Such chronic low-grade 

inflammation is commonly referred to as inflammaging and is thought to underlie the 

progression of several age-dependent degenerative afflictions including CV diseases 

78. 

Although in both CANTOS and COLCOT patients with previous myocardial infarction 

were enrolled, the two cohorts show important differences. Specifically, in CANTOS 

patients have been selected to carry an increased “residual inflammatory risk”. Given 

the importance of inflammation in the pathophysiology of atherosclerosis and its 

thrombotic complications, this concept has developed in opposition to the classic 
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“residual cholesterol risk” and employs hs-CRP and not lipoprotein particles as a risk 

biomarker 79. Selecting patients based on hs-CRP in CANTOS represented an 

important step toward precision medicine and surely enough increased the chances 

of success for this trial. Of interest, in patients treated with canakinumab, hs-CRP 

levels were greatly reduced already after the first administration of the drug and 

remained low throughout the whole follow-up period 24, 45. Furthermore, patients 

showing lower hs-CRP levels after the first canakinumab injection were also those 

who benefitted the most while the rest of the treatment group showed a Kaplan-

Meyer curve for the composite endpoint very similar to that of the control group 45. In 

this setting, hs-CRP might serve as a very early marker of canakinumab efficacy, 

thus allowing a personalized therapy. In contrast, hs-CRP was assessed only in a 

small subgroup of 207 patients in COLCOT, thus limiting the interpretation of the 

results 24, 25. Yet, its levels at the time of randomization were similar to those of 

CANTOS while, whether in CANTOS only the treatment arm showed a significant 

reduction, in COLCOT hs-CRP was blunted in all patients independently of the 

randomization. Although apparently counterintuitive, the authors address this finding 

by discussing the different cohorts enrolled by the trials: early (max 30 days) after 

myocardial infarction in COLCOT vs stable CAD in CANTOS 25. 

Colchicine and canakinumab are very different from many points of view: the first is 

an inexpensive plant-derived chemical with broad targets used in many patients for 

several years and thus well characterized; the second is a biological of recent 

development which received FDA authorization for selected rare diseases and 

maintains high market cost. Indeed, comparison of cost-effectiveness analysis 

between the two medications yielded opposite results whereby, the addition of 

colchicine on top of standard of care therapy proved  far more economically efficient 
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as compared to canakinumab 80, 81. Yet, these two drugs find in NLRP3 

inflammasome pathways a common target 82(Figure 2). Inflammasomes are 

multiprotein complexes involved in mediating inflammation 83. NLRP3 is the most 

widely studied inflammasome and holds important functions in atherogenesis. 

Accordingly, NLRP3 components are highly expressed in human plaques and their 

inhibition was shown to blunt atherosclerosis in animal models 84, 85. NLRP3 

assembly and activation are finely tuned by a “two-hit” process: the first signal 

triggers the transcription of its components [namely, NLRP3, Apoptosis-associated 

speck-like protein containing a caspase recruitment domain (ASC) and pro-caspase] 

while a second stimulus activates caspase 1 and leads to secretion of active IL-1β 

and IL-18 thus fueling inflammation 86. Of note, priming and activating stimuli include 

different mediators deeply involved in atherogenesis such as modified lipoproteins 87, 

cholesterol crystals 85, lipopolysaccharide (LPS) 88 and reactive oxygen species 89, 

further underscoring the relevance of this complex in plaque growths . Canakinumab 

and colchicine act at different levels of the NLRP3 pathways. Canakinumab 

specifically inhibits IL-1β preventing its binding to IL-1 receptor and thus the 

activation of intracellular nuclear factor kappa-light-chain-enhancer of activated B 

cells (NF-κB) and MAP kinase pathways 90. On the other hand, colchicine is thought 

to inhibit the expression of pyrin gene, thus blunting NLRP3 assembly 91. 

Furthermore, by acting on microtubule formation, colchicine also prevents the 

intracellular transport of the adaptor protein ASC, fundamental for NLRP3 proteins 

co-localization 92. In addition, colchicine directly blocks caspase-1-mediated pro-IL-1β 

activation 93 alongside reducing P2X7-associated pore formation and decreasing 

potassium efflux, an important step in NLRP3 response 94. NLRP3 has emerged as 

an important common denominator to the two successful anti-inflammatory trials in 
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cardiology differentiating them from negative ones such as Cardiovascular 

Inflammation Reduction Trial (CIRT) where the purine signalling inhibitor 

methotrexate was employed in patients at high CV risk (i.e. previous myocardial 

infarction, multivessel CAD, type 2 diabetes or metabolic syndrome) 19. In this sense, 

beside IL-1β, also other mediators of the inflammasome pathway such as IL-18 and 

its downstream effector IL-6 should be further explored as potential therapeutic 

targets to reduce CV event rates.  

 

5. Every cloud has a silver lining: learning from futile trials 

5.1 Stabilization of Atherosclerotic Plaque by Initiation of Darapladib Therapy 

(STABILITY) and Stabilization of Plaque Using Darapladib-Thrombolysis in 

Myocardial Infarction 52 (SOLID-TIMI 52) trials 

STABILITY and SOLID-TIMI 52 are large double-blind trials investigating darapladib, 

a potent oral inhibitor of Lp-PLA2 
22, 23. Lp-PLA2 is a serine lipase responsible for 

removing the acetyl group at the sn-2 position of platelet-activating factor, an active 

phospholipid with proven functions in different pathologic and physiologic processes. 

Lp-PLA2 activity leads then to the production of lysophospholipids and oxidized 

phospholipids which have been identified within atherosclerotic plaques 95. Most of 

Lp-PLA2 circulates bound to LDL where it participates in its oxidative modification 

within the vascular wall generating oxidized phospholipids thus fueling vascular 

inflammation and atherosclerosis progression 95, 96. Yet, as Lp-PLA2 removes 

oxidized phospholipids, an anti-oxidative functions for this enzymes has also been 

demonstrated 97. Despite of this, most of the recent literature concur on the pro-

inflammatory role of such a molecule. Lysophospholipids generated by Lp-PLA2 

contributes to the inflammatory response by favouring neutrophil function 98, but also 
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acting as chemokines and attracting leukocytes 99 eventually contributing to plaque 

development 100, 101. Similarly, oxidized non esterified fatty acids produced by Lp-

PLA2 facilitate the expression of adhesion molecules and attract macrophages to the 

arterial intima 102. The trials found their rational in several experimental and clinical 

observations, among them the proof of darapladib’s efficacy in blunting 

atherosclerosis in a swine model of disease together with the direct association 

between Lp-PLA2 levels 103 and the risk of CAD after adjustment for conventional risk 

factors that was reported by a large meta-analysis of prospective studies 104. As a 

result, STABILITY investigated the efficacy of darapladip 160 mg OD in 15’828 

patients with chronic CAD, while SOLID-TIMI 52 used the same treatment to prevent 

major events in 13’026 patients recently hospitalized with acute coronary syndrome 

(ACS) 22, 23. For STABILITY, the inclusion criteria were previous myocardial infarction, 

previous coronary reperfusion intervention or multivessel CAD, while in SOLID-TIMI 

52 only patients hospitalized with ACS in the 30 days prior to randomization were 

enrolled. In addition, for inclusion in both studies, patients were required at least one 

traditional CV risk factors (age>60 years, diabetes, dyslipidemia, active smoking, 

polyvascular arterial disease or moderate kidney dysfunction). As a result, the 

populations enrolled were quite heterogeneous, thus possibly accounting at least in 

part for the neutral results achieved. Indeed, darapladip failed to prevent the primary 

endpoint that included CV death, myocardial infarction or stroke in STABILITY and 

CV death, myocardial infarction or urgent coronary revascularization for myocardial 

ischemia in SOLID-TIMI 52 22, 23. Of interest, in STABILITY the intervention lead to a 

modest nominal reduction of the prespecified secondary endpoints of MACE and 

total coronary events, a preliminary finding that did not find support in SOLID-TIMI 52. 

Consistently, adverse events of darapladib treatment were similar in the two trials 
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and consisted of increased rate of diarrhea and odor in skin, feces, and urine of 

treated patients due to the presence of a sulfhydryl group in the darapladib molecule 

22, 23. These two studies did not investigate the dose-dependent effect of the drug and 

the used protocol were based on earlier placebo-controlled trials showing a reduction 

of Lp-PLA2 activity by 60-66% when 160 mg of darapladib were administered orally 

once a day 105, 106. Although patients in STABILITY and SOLID-TIMI 52 were not 

selected based on the residual inflammatory risk resulting in quite low baseline levels 

of inflammatory markers (1.3 mg/L hs-CRP and 2.1 ng/L IL-6 for STABILITY107  and 

IL-6 2.02 ng/L for SOLID-TIMI 52 sub cohort analysis108), the same preliminary 

investigations suggested that the effects of this protocol on such circulating 

mediators are very modest and at best leading to a reduction in IL-6 levels of 12.3% 

without significantly affecting hs-CRP 105, 106. These weak effects are supposed to 

partially account for the disappointing results of the trials and definitively ceased the 

interest in Lp-PLA2 inhibitors for preventing MACEs. 

 

5.2 Vascular Inflammation Suppression to Treat Acute Coronary Syndrome for 16 

Weeks (VISTA-16) trial 

The secretory form of PLA2 was instead investigated in the VISTA-16 trial 21. The 

sPLA2 family comprises several hydrolyzing enzymes acting on glycophospholipids 

(kindly refer to the previous paragraph) and generating different lipids (including 

prostaglandins) involved in atherogenesis with both pro- and anti-inflammatory 

functions 109. sPLA2 enzymes are constitutively  expressed  in  inflammatory cells as 

well as in fibroblasts furthermore, their expression can be modulated by a variety of 

pro-inflammatory molecules including IL-1β, IL-6 and interferons. sPLA2 promote  the 

formation  of  lysophosphatidylcholine,  arachidonic acid, docosahexaenoic acid, and 
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eicosapentaenoic acid, all precursors of multiple pro-inflammatory mediators 110. 

Further, by acting on their membrane receptor, sPLA2 can mediate several cellular 

processes including proliferation, migration and production of cytokines 111. Patients 

enrolled in VISTA-16 received varespladib, an oral pan-sPLA2 inhibitor associated 

with blunted atherosclerosis in experimental models that previously showed to have 

important inhibitory effects on the pro-atherogenic sPLA2 isoforms of the group II 112. 

A total of 5145 patients were randomized to receive varespladib 500 mg OD or 

matching placebo on top of optimal secondary cardio-preventive therapy before the 

trail was terminated for futility and possible harm on March 2012. In this case the 

study cohort consisted of patients within 96h from their hospitalization for ACS with 

one additional risk factor for recurrent events 21. Although the primary composite 

endpoint including fatal and non-fatal CV ischemic events including stroke and 

unstable angina requiring hospitalization was equally distributed among patients in 

the two arms, the secondary outcome not including unstable angina occurred more 

often in patients receiving the sLPA2 inhibitor as compared to the placebo group. 

Such an effect was mainly driven by higher rate of recurrent myocardial infarction 21. 

Furthermore, adverse events occurred more often in the varespladib group with 

evidence of hepatotoxic effects requiring suspension of the treatment 21. Whether the 

increased CV risk was due to sLPA2 inhibition or to off-target effects of the compound 

remains to be fully elucidated. The fact that genetic deficiency of sPLA2 is not 

associated with increased atherosclerosis in animal models may support the latter 

hypothesis 113. Furthermore, the causative role of sLPA2 for atherothrombosis has 

been recently questioned by Mendelian randomization studies which failed to find 

any association 114. Differently from CANTOS and COLCOT, VISTA-16 trial and other 

studies investigating varespladib did not show robust effects of such a compound on 
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IL-1β/IL-6 pathway and hs-CRP levels (the latter being very high at baseline –median 

value 10.5 mg/L- due to the early enrollment after the acute events) 21, 115, 116. Failing 

to show any effect on CV risk, trials targeting inflammatory pathways other than IL-

1β/IL-6 cascade indirectly underscore the importance of such signalling in vascular 

inflammation.  

 

5.3 Losmapimod to Inhibit p38 MAP Kinase as a Therapeutic Target and Modify 

Outcomes After an Acute Coronary Syndrome (LATITUDE)–TIMI 60 trial 

LATITUDE-TIMI 60 trial employed losmapimod (7.5 mg twice daily) to inhibit p38 

MAP kinase in patients hospitalized for myocardial infarction and treated with the 

standard of care therapy 20. The p38 MAP kinase systems includes 4 proteins of 

which p38α and p38β are ubiquitously expressed in human cells and deeply involved 

in the intracellular signalling under inflammatory and environmental stress conditions. 

Activation of such signalling cascade as reported in atherosclerotic vessels, 

enhances the synthesis of different inflammatory mediators such as ILs, pro-oxidant 

enzymes and metalloproteinases thereby further amplifying the vascular 

inflammatory process 117. Specifically, in endothelial cells p38 MAP kinase mediates 

cell adhesion molecules, chemotactic agents, migration, endothelial permeability and 

angiogenesis 118-121. In smooth muscle cells this system associates with apoptosis, 

calcification, hypertrophy, migration and proliferation 122-124. While in leukocytes, p38 

MAPkinase is involved in TLR signalling, cytokine production, vascular wall infiltration, 

T-cell receptor/B-cell receptor signalling, macrophage LDL uptake and apoptosis 

(foam cell formation), but also dendritic cell maturation and antigen presentation 125-

130. Accordingly, preclinical data showed beneficial effects of losmapimod on 

endothelial function in hypertensive rats by blunting IL-1 production 131. The study 
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was composed of two part; part A randomized to placebo or losmapimod 3’503 

patients and was designed to assess the drug safety profile and explore its efficacy 

before proceeding with the larger part B (approximately 22 000 patients). Again, the 

primary endpoint was the secondary prevention of CV death, mycardial infarction, 

and severe recurrent ischemia requiring urgent coronary artery revascularization 

while the principal secondary endpoint included only fatal and non-fatal myocardial 

infarctions 20. Investigators ceased the enrollment of patients after part A due to 

futility since losmapimod did not reduce the risk of recurrent major adverse CV 

events at week 24 of follow up. Exploratory analysis on secondary outcome and 

subgroup analysis further confirmed the main result 20. Suprisingly, treatment with 

losmapimod led to a 30% reduction of hs-CRP at week 12 as compared to placebo 

(baseline levels 3.6-3.7 mg/L) and also lowered pro-brain natriuretic peptide (pro-

BNP), both valid markers of CV outcomes. The short treatment duration (12 weeks) 

and the non-specific targeting of both p38α and p38β, which can play different roles 

in CV disease progression, were put forward as possible explanations for the 

disappointing results. Lastly, a recent randomized double-blind placebo-controlled 

trial employing this drug in patients with chronic obstructive pulmonary disease failed 

to show any effect of such treatment on arterial inflammation and endothelial function 

as assed by F-Fluorodeoxyglucose positron emission tomography and brachial artery 

flow-mediated dilatation, respectively 132. 

 

5.4 Cardiovascular Inflammation Reduction Trial (CIRT) 

CIRT is a randomized, double-blind trial of methotrexate (at a target dose of 15 to 20 

mg weekly) in patients with stable atherosclerosis (history of myocardial infarction or 

multivessel CAD and either diabetes or metabolic syndrome) 19. Methotrexate is an 
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inexpensive and widely used broad-spectrum immunomodulatory agent targeting 

purinergic signalling and approved for the treatment of different rheumatological 

inflammatory conditions. Being an analogue of folic acid, methotrexate inhibits 

different key enzymes involved in the synthesis of purins and pyrimidines, thereby 

affecting DNA synthesis, cell proliferation and turnover. As such, methotrexate exerts 

its effects mainly on high turnover cells such as inflammatory ones. Furthermore, 

methotrexate also inhibits the enzymes involved in purine catabolism, thereby 

leading to intracellular accumulation of adenosine (deriving from AMP 

dephosphorilation) and activation of anti-inflammatory receptors A2A and A3 receptors 

(for a detailed discussion of methotrexate pharmacodynamics please refer to 133). Of 

much interest, methotrexate can promote reverse cholesterol transport and limits 

macrophage transformation into foam cells, thereby having beneficial impact on 

atherosclerotic plaque development 134. Differently from its effects on white blood 

cells, less is known about the putative role of methotrexate on vascular wall. In vitro 

characterization of methotrexate effects on endothelial cells has often reported 

conflicting results, methotrexate antiproliferative effects may negatively impact on 

endothelial functions causing cell swelling and membrane disruption 135, 136. Yet, 

when given at lower dosages, it can reduce the TNF-α-mediated adhesion molecule 

upregulation 137, 138. Also, by increasing AMPK phosphorylation, low-dose 

methotrexate was shown to induce the expression of manganese superoxide 

dismutase and heme oxygenase, thereby potentially reducing oxidative stress 139. 

Even less is known about the effects of methothrexate on smooth muscle cells. Yet, 

preliminary reports suggest an anti-proliferative role 140 which requires additional 

confirmation and characterization. Treatment with methotrexate at different dosages 

yelded promising results in animal models of atherosclerosis 138, 141. Nonetheless, the 
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cardioprotective role of methotrexate in patients with rheumatoid arthritis have been 

widely substaintiated 142, 143. With this basis, the CIRT trial consisted of a run-in 

phase which allowed enrolling only patients that could tolerate methotrexate at the 

dosage of 15 mg per week. Only participants that completed the trial run-in phase 

proceeded to the second phase and were randomized to receive placebo or 

continuing methotrexate which was then increased at 20 mg weekly at month 4 of 

treatment 19. The final primary endpoint - a composite of CV death, nonfatal 

myocardial and stroke, or hospitalization for unstable angina that led to urgent 

revascularization – was equally distributed among the study arms and reached a pre-

specified boundary for futility leading to the premature termination of the investigation 

on March 2018 19. Also, methotrexate did not show any effect on further secondary 

endpoints or subgroup analysis in the 4’786 CIRT participants. As expected, 

methotrexate associated with the well-known side-effects of the drug (including 

mouth sores, oral pain, modest leukopenia and elevation of liver transaminases); 

however, the authors reported for the first time an increased risk for the development 

of non–basal-cell skin cancer in patients treated with methotrexate 19. Among the 

limitations of this trial is the fact that patients enrolled in CIRT were not selected 

based on their residual inflammatory risk, thus showing lower baseline inflammation 

levels as compared to CANTOS (i.e. hs-CRP median level for CANTOS 4.2 mg/L vs 

1.6 mg/L in the CIRT trial) 19, 24. Furthermore, methotrexate did not reduce plasma 

levels of IL-1β, IL-6 or hs-CRP suggesting a low anti-inflammatory effect on the 

pathways that showed great promise in the CANTOS and COLCOT trials.     

 

Besides offering insights on the specific drug that was investigated, neutral RCTs 

further underlined the importance of a correct stratification of patient based on the 
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residual inflammatory risk as indicated by circulating levels of inflammatory 

biomarkers. Indeed, differently from the CANTOS, none of the neutral RCTs included 

hs-CRP levels among the enrollment criteria. Future anti-inflammatory clinical trials in 

the CV setting will have to take into consideration baseline levels of inflammation, 

potentially advancing personalized cardiology by administrating secondary 

prevention agents for atherosclerotic protection only to the most appropriate patients. 

This aspect gains even more weight when considering the high price of some anti-

inflammatory agents (i.e monoclonal antibodies), thereby improving the cost-

effectiveness analysis of such interventions 80, 81.   

 

6. Conclusions 

The role of inflammation in the development and fate of an atherosclerotic plaque 

has been convincingly demonstrated in different pre-clinical models. The very high 

number of immune cells and mediators of inflammation within the human atheroma 

has long suggested a key role for inflammation in patients as well. Yet, preliminary 

studies provided limited evidence and often conflicting results. By using canakinumab 

and colchicine, CANTOS and COLCOT studies solidly confirmed the inflammation 

theory of atherosclerosis in humans and demonstrated for the first time that residual 

inflammatory risk is an effective target for secondary CV prevention thus representing 

an important opportunity to implement personalized medicine. Specifically, these 

trials put NLRP3 inflammasome pathway inhibition under the spotlight as a promising 

strategy for anti-inflammatory interventions in cardiology. Furthermore, they 

highlighted the need for a careful monitoring of host defense adverse effects of such 

interventions and the importance of finding safer targets which risks of infections. 

Findings from neutral trials on anti-inflammatory agents did not dispute the 
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importance of inflammation in atherosclerosis, but rather proved the importance of 

considering specific and often interconnected inflammatory pathways as therapeutic 

targets in CV patients with residual inflammatory risk. Although CANTOS and 

COLCOT may not immediately impact on everyday CV practice, they definitively 

opened the door for the clinical translation of immunomodulatory agents to lower CV 

risk. 
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11. Figure legend 

 

Figure 1: Recent phase III randomized clinical trials investigating anti-

inflammatory agents in cardio- and cerebrovascular prevention. Hazard ratios of 

the different anti-inflammatory interventions with respect to secondary prevention of 

major adverse cardiovascular events. Boxes indicate the targets of the different trials 

and basic findings suggesting their potential mechanisms of action. HR: hazard ratio. 

 

Figure 2: NLRP3 pathway as a common denominator of canakinumab and 

colchicine effects. While canakinumab specifically inhibit IL-1β-mediated activation 

of IL-1 receptor, colchicine inhibits different steps of NLRP3 inflammasome 

assembling, priming and activation thus affecting all its downstream mediators. 

Beside their direct effects on the vasculature, pro-inflammatory cytokines also trigger 

the acute phase response thereby increasing circulating levels of CRP. When 

measured by a hig-sensitivity (hs) assay, hs-CRP can be used as biomarker of 

residual inflammatory risk. CRP: C-reactive protein; IL: interleukin; LPS: 

lipopolysaccharide; NLRP3: NOD-, LRR- and pyrin domain-containing protein 3; 

ROS: reactive oxygen species. 
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Table 1: Main characteristics of the 2 positive randomized clinical trials  

  

  

 
 

Canakinumab Anti-
inflammatory Thrombosis 
Outcome Study (CANTOS) 

Colchicine Cardiovascular 
Outcomes Trial (COLCOT) 

Population 

Previous myocardial 
infarction and hs CRP ≥ 2 

mg/L under intensive 
secondary CV prevention 

therapy 

Myocardial infarction within 
30 days with percutaneous 

revascularization procedures 
under intensive secondary 

CV prevention 

Drug Canakinumab Colchicine 

Target Interleukin-1β Microtubule assembly  

Route of administration Subcutaneous Oral 

Frequency of 
administration 

Every 3 months Once daily 

Dosage 50-100-150 mg 0.5 mg 

Primary composite 
endpoint 

Nonfatal myocardial 
infarction, any nonfatal 

stroke, or cardiovascular 
death 

Cardiovascular death, 
resuscitated cardiac arrest, 

myocardial infarction, stroke, 
or urgent hospitalization for 
angina leading to coronary 

revascularization 

Adverse reactions 
Neutropenia, fatal infections 

or sepsis, uncomplicated 
thrombocytopenia  

Nausea, flatulence and 
pneumonia 
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