56,481 research outputs found

    Plasmonics in topological insulators: Spin-charge separation, the influence of the inversion layer, and phonon-plasmon coupling

    Full text link
    We demonstrate via three examples that topological insulators (TI) offer a new platform for plasmonics. First, we show that the collective excitations of a thin slab of a TI display spin-charge separation. This gives rise to purely charge-like optical and purely spin-like acoustic plasmons, respectively. Second, we argue that the depletion layer mixes Dirac and Schr\"odinger electrons which can lead to novel features such as high modulation depths and interband plasmons. The analysis is based on an extension of the usual formula for optical plasmons that depends on the slab width and on the dielectric constant of the TI. Third, we discuss the coupling of the TI surface phonons to the plasmons and find strong hybridisation especially for samples with large slab widths.Comment: 37 pages, 7 figure

    Spin-charge separation of plasmonic excitations in thin topological insulators

    Get PDF
    We discuss plasmonic excitations in a thin slab of a topological insulators. In the limit of no hybridization of the surface states and same electronic density of the two layers, the electrostatic coupling between the top and bottom layers leads to optical and acoustic plasmons which are purely charge and spin collective oscillations. We then argue that a recent experiment on the plasmonic excitations of Bi2Se3 [Di Pietro et al, Nat. Nanotechnol. 8, 556 (2013)] must be explained by including the charge response of the two-dimensional electron gas of the depletion layer underneath the two surfaces. We also present an analytic formula to fit their data.Comment: 7 pages, 5 figure

    Density-Dependent Synthetic Gauge Fields Using Periodically Modulated Interactions

    Get PDF
    We show that density-dependent synthetic gauge fields may be engineered by combining periodically modu- lated interactions and Raman-assisted hopping in spin-dependent optical lattices. These fields lead to a density- dependent shift of the momentum distribution, may induce superfluid-to-Mott insulator transitions, and strongly modify correlations in the superfluid regime. We show that the interplay between the created gauge field and the broken sublattice symmetry results, as well, in an intriguing behavior at vanishing interactions, characterized by the appearance of a fractional Mott insulator.Comment: 5 pages, 5 figure

    Quantum Levy flights and multifractality of dipolar excitations in a random system

    Get PDF
    We consider dipolar excitations propagating via dipole-induced exchange among immobile molecules randomly spaced in a lattice. The character of the propagation is determined by long-range hops (Levy flights). We analyze the eigen-energy spectra and the multifractal structure of the wavefunctions. In 1D and 2D all states are localized, although in 2D the localization length can be extremely large leading to an effective localization-delocalization crossover in realistic systems. In 3D all eigenstates are extended but not always ergodic, and we identify the energy intervals of ergodic and non-ergodic states. The reduction of the lattice filling induces an ergodic to non-ergodic transition, and the excitations are mostly non-ergodic at low filling.Comment: 5 pages, 6 figure

    Ultracold dipolar gases - a challenge for experiments and theory

    Full text link
    We present a review of recent results concerning the physics of ultracold trapped dipolar gases. In particular, we discuss the Bose-Einstein condensation for dipolar Bose gases and the BCS transition for dipolar Fermi gases. In both cases we stress the dominant role of the trap geometry in determining the properties of the system. We present also results concerning bosonic dipolar gases in optical lattices and the possibility of obtaining variety of different quantum phases in such case. Finally, we analyze various possible routes towards achieving ultracold dipolar gases.Comment: This paper is based on the lecture given by M. Lewenstein at the Nobel Symposium ''Coherence and Condensation in Quantum Systems'', Gothesburg, 4-7.12.200
    • …
    corecore