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We consider dipolar excitations propagating via dipole-induced exchange among immobile molecules
randomly spaced in a lattice. The character of the propagation is determinedby long-rangehops (Levy flights).
We analyze the eigenenergy spectra and the multifractal structure of the wave functions. In 1D and 2D, all
states are localized, although in 2D the localization length can be extremely large leading to an effective
localization-delocalization crossover in realistic systems. In 3D, all eigenstates are extended but not always
ergodic, and we identify the energy intervals of ergodic and nonergodic states. The reduction of the lattice
filling induces an ergodic to nonergodic transition, and the excitations are mostly nonergodic at low filling.
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Quantum transport and the spreading of wave packets in
disordered media are known to be suppressed by interfer-
ence. This phenomenon, Anderson localization [1], has
been reported in a variety of systems, including ultrasound
[2], microwaves [3], light [4], electrons [5], and cold atoms
[6,7]. All eigenstates of a quantum particle in disorder are
known to be localized in low dimensions (1D and 2D) [8],
whereas in 3D there is a mobility edge (ME) separating
localized from extended states. The extended states are
commonly believed to be ergodic: the spatial average of
any observable for a given realization of disorder is
equivalent to the ensemble average. At the same time,
the states at the ME are multifractal [9,10], i.e., neither
localized nor ergodic.
The ergodicity of many-body wave functions, which is a

cornerstone of conventional statistical physics, is obviously
violated in the regime of many-body localization [11].
Moreover, there can be a finite range of energies, where
the states are extended nonergodic (NEE) [12] and present an
intriguing multifractal nature. One-particle eigenstates of
the Anderson model [1] on hierarchical lattices, such as the
Bethe lattice [13], are believed to mimic those for generic
many-body systems. Recent studies of the Bethe lattice
[14,15] and random matrix models [16] have brought addi-
tional evidence for the existence of a finite-width band of
NEE states. This is in contrast with the ordinary Anderson
model, where only states at the ME are multifractal.
Being crucial for describing a broad class of systems, the

nature of the transition from NEE to extended ergodic (EE)
states is far from being understood, and even the existence of
the NEE phase remains questionable. Therefore, it is
interesting to broaden the class of NEE systems that are

accessible for theoretical and experimental studies. Below
we demonstrate that the eigenstates of a quantumparticle in a
disordered lattice with long-range hops (quantum Levy
flights) [17–19] can be of the NEE type. Levy flights, which
are difficult to realize experimentally for material particles,
appear naturally in the transport of excitations in systems of
nuclear spins [20], nitrogen-vacancy centers [21], trapped
ions [22,23], Rydberg atoms [24], and magnetic atoms and
polar molecules in optical lattices [25,26]. We focus on the
latter system, although our analysis applies to all of them.
Polar molecules in the lowest rovibrational state [27–29]

can be excited to a second rotational state, building a pseudo-
spin-1=2 system. In a deep lattice, these excitations propa-
gate among the (immobile) molecules due to dipole-induced
nonradiative excitation transfer. The hopping amplitude of
the excitation from an excited to ground-state molecule
decays as 1=r3, with r being the intermolecular separation.
This excitation exchange has been recently observed forKRb
molecules [26], opening perspectives for realization of spin
models [30–32]. Typically, only a fraction of the lattice is
randomly filled by molecules, with maximally one molecule
per site [26,33]. Thus, exchange of excitations results in a
peculiar off-diagonal disorder with long-range hops [34].
Here we study the spectral statistics and the spectrum of

fractal dimensions [15] of the eigenstates of a dipolar
excitation in this system. Because of Levy flights, the
eigenstates are dramatically different from the eigenstates
of a conventional Anderson model with nearest-neighbor
coupling and depend crucially on the dimensionality and
lattice filling. In 1D and 2D lattices, all eigenstates are
indeed localized. In the latter case, however, the localiza-
tion length can be extremely large, and typical experiments
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encounter finite-size effects [35]. In contrast, dipolar
excitations in 3D systems are always extended. The
spectrum contains, however, both NEE and EE regions.
The former grows when the lattice filling decreases, and,
hence, 3D dipolar excitations are dominantly nonergodic at
low fillings.
Model.—In the following, we consider molecules in two

possible rotational states, the lowest rovibrational state (↓)
and an excited one (↑). The molecules are confined in a
cubic lattice (square lattice for 2D systems) in the absence
of any external electric field. We will assume for simplicity
that all molecules are ↓, and there is a single excitation
corresponding to a spin flip. Similar results are expected for
multiple excitations as long as the gas of excitations
remains sufficiently dilute. Because of dipole-dipole inter-
actions, the excitation may be transferred from a molecule i
to another molecule j, with a hopping amplitude:

tij ¼
−d2↑↓

a3jri − rjj3
ð1 − 3cos2θijÞ; ð1Þ

where d↑↓ is the dipole matrix element between ↓ and ↑
states, rj is the position of the jth molecule in units of the
lattice spacing a, and θij is the angle between the
quantization axis [36] and the vector ðri − rjÞ. The motion
of the excitation can then be described by an effective
single-particle Hamiltonian with long-range anisotropic
hopping:

H ¼ −
X

i;j

tijjiihjj; ð2Þ

where jji denotes the state in which the excitation is at
molecule j. We assume that the molecule positions rj
are randomly distributed with an average filling factor
0 ≤ ρ ≤ 1, and, accordingly, the couplings tij are also
random. Below, we measure all energies in units of t0 ¼
−d2↑↓=a

3 and all lengths in units of the lattice constant a.
The effective dimensionless parameter of the problem is the
filling factor ρ, and the disorder is maximal in the limit of
ρ → 0. For growing ρ, the hopping terms tij become more
regular, and at ρ ¼ 1 the dipolar excitations propagate
ballistically in a regular lattice.
We study the properties of model (2) by means of exact

diagonalization for different dimensionalities d and fillings
ρ. We consider from 100 to 1000 random realizations for
each d and ρ characterized by a random distribution of N
molecules in Ld lattice sites, with ρ ¼ N=Ld. Our numeri-
cal capabilities limit the number of molecules to
N ¼ 80000. The results from finite-size systems are then
extrapolated to correctly infer the asymptotic properties
for N → ∞.
Eigenstate properties.—We focus below on the proper-

ties of the eigenstates of Hamiltonian (2),Hjψni ¼ Enjψni.

The distribution of the level spacings δn ¼ Enþ1 − En is
best characterized by the ratio [37,38]

rn ¼ min ðδn; δn−1Þ=max ðδn; δn−1Þ: ð3Þ

Localized states present a Poissonian distribution of rn,
with an average hriP ≈ 0.386 due to the proliferation of
degenerate states located at distant spatial positions. In
contrast, extended states show level repulsion, displaying a
Gaussian orthogonal ensemble (GOE) Wigner-Dyson dis-
tribution of rn, with hriGOE ≈ 0.53. We evaluate hri in
different energy windows.
The spatial properties of the eigenfunctions jψni ¼P
jψnðjÞjji are best characterized by the moments

IqðnÞ ¼
X

j

jψnðjÞj2q ∝ N−τqðnÞ: ð4Þ

The inverse participation ratio I2 measures the inverse of
the number of molecules participating in a given eigenstate.
For EE states, the ensemble average hjψnðjÞj2qi matches
the spatial average. The EE states present τq ¼ ðq − 1Þ,
whereas τq ¼ 0 for localized states [9,15].
In general, it is convenient to introduce fractal dimensions

Dq ¼ τq=ðq − 1Þ; ð5Þ

so that for EE states, we have Dq ¼ 1, whereas Dq ¼ 0
for localized states. NEE states are multifractal [9,10]; i.e.,
0 < Dq < 1, andDq decreases with increasing q. Following
the procedure of Ref. [15], we perform the Legendre trans-
form of τq and evaluate the so-called spectrum of fractal
dimensions (SFD) fðαÞ. This function characterizes the
Hausdorff dimension of the sites with a probability density
jψ jj2 ¼ N−α. For EE states, fðαÞ shows a delta-functional
behavior, namely, f ¼ 1 at α ¼ 1 and is equal to −∞
otherwise. For NEE states, fðαÞ presents a parabolic form
with an exact symmetry fð1þ xÞ ¼ fð1 − xÞ þ x [39,40].
Localized states display a triangular form, and fðαÞ ¼ kα in

(a) (b)

FIG. 1. Dilute limit in 2D: hri as a function of E for L ¼
9 × 104 and ρ ¼ 2.5 × 10−6 averaged over 1000 samples. Inset
(a) shows the triangular fðαÞ with slope k≃ 0.5 at Eρ−3=2 ¼ 0.5,
whereas inset (b) shows the case of Eρ−3=2 ¼ 5 where k ≈ 0.35.
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the left part of the triangle, with k < 1=2 (k ¼ 1=2 character-
izes critical states with diverging localization length).
The eigenstate properties depend crucially on dimen-

sionality. For 1D systems, the excitations remain localized
for any ρ < 1. We have checked in particular that for
ρ ¼ 0.99, the distribution of level spacings rn remains
Poissonian, and D2 ¼ 0 in the whole spectrum. Localized
states (also in 2D) present exponential localization at
intermediate distances and wings following a 1=r6 decay,
resulting from the 1=r3 dependence of long-range hops.
2D systems.—Let the molecules be located in the x-y

plane. The quantization axis is in the x-z plane, and it
forms an angle β with the x direction. We, thus, have
tij ¼ t0ð1 − 3 cos2 β cos2 ϕÞ=jri − rjj3, with ϕ being the
angle between ðri − rjÞ and the x direction. We assume
cos2 β ¼ 2=3 in order to mimic best the 3D anisotropy.

However, in the isotropic case, β ¼ π=2, the results are
quite similar.
We start the description of our results with the dilute

limit ρ ≪ 1, where the intermolecular spacing is much
larger than the lattice spacing, and the properties of the
system are self-similar with the filling ρ. The relevant
energy scale is ρ3=2 corresponding to the dipole-dipole
interaction at the mean intermolecular distance. Figure 1
shows hri for different energy windows. Eigenstates with
energies jEj≳ ρ3=2 are clearly localized, with hri≃ 0.386
and a triangular SFD with slope k < 1=2 (see the right
inset to Fig. 1). In contrast, for jEjρ−3=2 < 1, we have
hri > 0.386, and the SFD fðαÞ is also triangular but with
the slope k≃ 1=2 (left inset of Fig. 1). This indicates that
the inner states are either critical or have an extremely large
localization length.
We then consider 2D systems at a finite filling. Figure 2

shows the distribution of hri for N ¼ 50000 and different
values of ρ. For ρ ≤ 0.5, the distribution of hri closely
resembles that in the dilute limit, with a central critical core
of low-jEj states and localized states outside of this core.

ρ

E

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−4
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FIG. 2. Spectral statistics at finite filling in 2D: hri in various
energy windows for lattices with fillings ρ.

(a)

(b)

FIG. 3. Dilute limit in 3D: (a) hri as a function of E=ρ for
L ¼ 1600 (blue solid curve), L ¼ 1800 (green dashed curve), and
L ¼ 2000 (red dash-dot curve), and ρ ¼ 10−5 averaged over 100
disorder samples. (b) Dq¼2 and Dq→∞ as functions of energy.

(a) (b)

FIG. 4. SFD in 3D for ρ ¼ 0.1: (a) fðα; NÞ at E ¼ 0 for
N ¼ 1500 (blue curve) and N ¼ 61000 (red curve). Note the
crossing points L and R at αL and αR, between the SFD for the
two values of N. (b) The crossings αL and αR follow a 1= lnN
extrapolation all the way to α ¼ 1, as expected for EE states.

(a) (b)

FIG. 5. SFD in 3D at E ¼ −1 for ρ ¼ 0.1, presenting a
parabolic form: (a) SFD for N ¼ 10000 (lower curve), N ¼
30000 (middle curve), and N ¼ 60000 (upper curve). The inset
shows fðα; NÞ at α ¼ 1.5 [where fðαÞ is maximum] versus
1= lnðNÞ. (b) Extrapolation of SFD for N → ∞ that fulfills the
symmetry fð1þ xÞ ¼ fð1 − xÞ þ x characteristic of NEE states.

PRL 117, 020401 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
8 JULY 2016

020401-3



For ρ ≥ 0.6, a growing central region of the spectrum
presents hri > 0.386. The effective level repulsion results
from the finite size of the system, since the localization
length of these states is likely comparable to the system
size, hence, driving a localization to delocalization (L-DL)
crossover [41].
3D systems.—Figures 3(a) and 3(b) summarize our 3D

results in thedilute limit for hri,D2, andD∞ [42].Note that in
3D, the characteristic energy scale given by the dipolar
interaction at themean interparticle distance is ρ. Eigenstates
with jEjρ−1 ≲ 2 are EE characterized by hri≃ 0.53 and
Dq ≃ 1 for all values of q. The EE character is confirmed
by our analysis of the SFD for growing system sizes
fN1 < N2 < � � � < Ns < � � �g. Motivated by Ref. [15], we
evaluate the crossings between fðα; NsÞ and fðα; Nsþ1Þ
[Fig. 4(a)]. We recall that NEE states display a parabolic
SFD, whereas for EE states fðα ¼ 1Þ ¼ 1 and
fðα ≠ 1Þ ¼ −∞. ForE ¼ 0, the crossings converge towards
α ¼ 1 following a 1= lnN dependence [Fig. 4(b)]. Hence, in
the center of the band, the states are extended ergodic.
For eigenstates outside the center, we have 0.386 <

hri < 0.53, and 0 < Dq < 1 that decay with growing q.
The SFD is parabolic and fulfills the relation fð1þ xÞ ¼
fð1 − xÞ þ x (Fig. 5). Hence, these are clearly NEE states.
Thus, for ρ ≪ 1, moving from the center to the wings of the
spectrumwe have a transition from EE to NEE states. There
is no Anderson transition into the localized regime even at
the spectral wings. The eigenstates remain NEE, with fðαÞ
approaching the critical triangular form with slope 1=2 as
jEj increases.
The ergodic to nonergodic transition is also observed at

finite ρ. The central region, where the EE character of the
states is confirmed by the SFD crossing technique dis-
cussed above, broadens towards eigenstates of large jEj for
growing ρ and pushes the NEE region to the spectral
outscores. This behavior is illustrated by the E dependence
of hri in Fig. 6 for different values of ρ. Note that the central
EE region with hri≃ 0.53 broadens and covers basically
all the spectrum already for ρ≃ 0.5. A small sliver of NEE
states remains at the spectral borders.
Conclusions and outlook.—Excitations propagating via

dipole-induced exchange among randomly distributed par-
ticles in a lattice conform a peculiar effectively disordered
system, whose properties depend crucially on the lattice

filling ρ and on dimensionality. One-dimensional systems
are clearly localized all the way up to ρ ¼ 1. In 2D, all
eigenstates are localized at ρ < 1, with a very large or even
diverging localization length in the middle of the band. At ρ
close to half-filling, finite 2D systems under typical
experimental conditions should experience an effective
L-DL crossover.
In 3D, all eigenstates are extended. The states are EE in

the center of the band, and outside the center they are NEE.
A change of the filling factor ρ can induce an ergodic ↔
nonergodic transition for a fixed energy E, and this novel
issue will be a topic of our future studies. The NEE spectral
region exists at any filling factor, and it becomes dominant
for small ρ.
Currently, it is possible to realize experimentally a lattice

with∼106 sites and filling factor up to ρ ∼ 0.3 or even higher.
One can think of the following experiment: create a dipolar
excitation in a particular site of the lattice and measure the
probability Pðr; tÞ to find it at a distance r after time t. In the
fully ergodic case, this probability has a familiar diffusion
distribution, with the diffusion constant D:

Pðr; tÞ ¼ ðDtÞ−3=2 expð−r2=DtÞ: ð6Þ

The broadening of the wave packet in the nonergodic case is
much slower. The initial state involves both ergodic and
nonergodic eigenstates. It is safe to expect that Pðr; tÞ is
determined by the ergodic states and, thus, follows the law (6)
at large distances exceeding ∼

ffiffiffiffiffiffi
Dt

p
. However, at smaller

distances Pðr; tÞ is determined by NEE states and, thus,
substantially exceeds the result of Eq. (6). In particular, the
return probabilityPðr ¼ 0; tÞ has a nontrivial powerlike time
dependence. A detailed analysis of dynamical properties of
dipolar excitations will be presented elsewhere.
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