386 research outputs found

    Radiation Defect-Induced Lattice Contraction of InP

    Get PDF
    We studied the lattice strain induced in the MeV ion bombarded InP crystals and the annealing behaviors of lattice strain, Raman line shift, and linewidth. The lattice spacing for the planes parallel to the surface decreases as a result of irradiation, and amounts to a strain of −0.061% for (100) face, −0.056% for (110) face, and −0.050% for (111) face for 15 MeV Cl bombarded samples to a dose of 1.25E15 ions/cm^2. The negative lattice strain, Raman line shift, and line width completely recover at 450°C, and show a major recovery stage at 250°C – 350°C

    Natural and sail-displaced doubly-symmetric Lagrange point orbits for polar coverage

    Get PDF
    This paper proposes the use of doubly-symmetric, eight-shaped orbits in the circular restricted three-body problem for continuous coverage of the high-latitude regions of the Earth. These orbits, for a range of amplitudes, spend a large fraction of their period above either pole of the Earth. It is shown that they complement Sun-synchronous polar and highly eccentric Molniya orbits, and present a possible alternative to low thrust pole-sitter orbits. Both natural and solar-sail displaced orbits are considered. Continuation methods are described and used to generate families of these orbits. Starting from ballistic orbits, other families are created either by increasing the sail lightness number, varying the period or changing the sail attitude. Some representative orbits are then chosen to demonstrate the visibility of high-latitude regions throughout the year. A stability analysis is also performed, revealing that the orbits are unstable: it is found that for particular orbits, a solar sail can reduce their instability. A preliminary design of a linear quadratic regulator is presented as a solution to stabilize the system by using the solar sail only. Finally, invariant manifolds are exploited to identify orbits that present the opportunity of a ballistic transfer directly from low Earth orbit

    The psychological and social consequences of single-sided deafness in adulthood

    Get PDF
    Objectives: This study examined the subjective psychological and social effects of highly asymmetric hearing loss (single-sided deafness) in adults. Design: Three group interviews were conducted using the critical incidence technique and analysed using an inductive thematic analysis. Study sample: Eight adults with a clinical diagnosis of a moderately-severe hearing loss or greater in one ear and normal or near-normal hearing in the other ear. Results: A range of functional hearing difficulties associated with single-sided deafness including impaired speech in background noise and reduced spatial awareness were reported to affect social and psychological well-being. Social consequences of single-sided deafness resulted from activity limitations and participation restrictions including withdrawal from and within situations. Participants reported psychological effects including worrying about losing the hearing in their other ear, embarrassment related to the social stigma attached to hearing loss, and reduced confidence and belief in their abilities to participate. Conclusions: Single-sided deafness can be associated with many negative consequences. Counselling may help overcome the psychological consequences of hearing loss regardless of whether technological support such as a hearing aid is prescribed. The audiological management of these individuals should support the development of listening strategies and set appropriate expectations for participation in everyday listening situations

    Attitude Control and Stabilization of Spacecraft with a Captured Asteroid

    Get PDF
    National Aeronautics and Space Administration's Asteroid Redirect Mission (ARM) aims to capture a Near Earth Orbit (NEO) asteroid or a piece of a large asteroid and transport it to the Earth{Moon system. In this paper, we provide a detailed analysis of one of the main control challenges for the first ARM mission concept, namely despinning and three-axis stabilizing the asteroid and spacecraft combination after the ARM spacecraft captures the tumbling NEO asteroid. We first show that control laws, which explicitly use the dynamics of the system in their control law equation, encounter a fundamental limitation due to modeling uncertainties. We show that in the presence of large modeling uncertainties, the resultant disturbance torque for such control laws may well exceed the maximum control torque of the conceptual ARM spacecraft. We then numerically compare the performance of three viable control laws: the robust nonlinear tracking control law, the adaptive nonlinear tracking control law, and the simple derivative plus proportional-derivative linear control strategy. We conclude that under very small mod- eling uncertainties, which can be achieved using online system identification, the robust nonlinear tracking control law guarantees exponential convergence to the fuel-optimal reference trajectory and hence consumes the least fuel. On the other hand, in the presence of large modeling uncertainties, measurement errors, and actuator saturations, the best strategy for stabilizing the asteroid and spacecraft combination is to first despin the system using a derivative (rate damping) linear control law and then stabilize the system in the desired orientation using the simple proportional-derivative linear control law. More-over, the fuel consumed by the conceptual ARM spacecraft using these control strategies is upper bounded by 300 kg for the nominal range of NEO asteroid parameters. We conclude this paper with specific design guidelines for the ARM spacecraft for efficiently stabilizing the tumbling NEO asteroid and spacecraft combination

    Clinical and laboratory findings associated with severe scrub typhus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Scrub typhus is a mite-borne bacterial infection of humans caused by <it>Orientia tsutsugamushi </it>that causes a generalized vasculitis that may involve the tissues of any organ system. The aim of this study was to identify factors associated to severe complications from scrub typhus.</p> <p>Methods</p> <p>We conducted this prospective, case-control study on scrub typhus patients who presented to the Department of Internal Medicine at Chosun University Hospital between September, 2004 and December, 2006. Cases were 89 scrub typhus patients with severe complications and controls were 119 scrub typhus patients without severe complications.</p> <p>Results</p> <p>There were significant differences in the absence of eschar, white blood cell (WBC) counts, hemoglobin, albumin, serum creatinine, fibrinogen, C-reactive protein (CRP), and active partial thromboplastin time (aPTT) between the two groups. Multivariate analysis demonstrated that only the following four factors were significantly associated with the severe complications of scrub typhus: (1) age ≥ 60 years (odd ratio [OR] = 3.13, <it>P </it>= 0.002, confidence interval [CI] = 1.53-6.41), (2) the absence of eschar (OR = 6.62, <it>P </it>= 0.03, CI = 1.22-35.8, (3) WBC counts > 10, 000/mm3 (OR = 3.6, <it>P </it>= 0.001, CI = 1.65-7.89), and (4) albumin ≤ 3.0 g/dL (OR = 5.01, <it>P </it>= 0.004, CI = 1.69-14.86).</p> <p>Conclusions</p> <p>Our results suggest that clinicians should be aware of the potential for complications, when scrub typhus patients are older (≥ 60 years), presents without eschar, or laboratory findings such as WBC counts > 10, 000/mm3, and serum albumin level ≤ 3.0 g/dL. Close observation and intensive care for scrub typhus patients with the potential for complications may prevent serious complications with subsequent reduction in its mortality rate.</p

    Extension of Earth-Moon libration point orbits with solar sail propulsion

    Get PDF
    This paper presents families of libration point orbits in the Earth-Moon system that originate from complementing the classical circular restricted three-body problem with a solar sail. Through the use of a differential correction scheme in combination with a continuation on the solar sail induced acceleration, families of Lyapunov, halo, vertical Lyapunov, Earth-centred, and distant retrograde orbits are created. As the solar sail circular restricted three-body problem is non-autonomous, a constraint defined within the differential correction scheme ensures that all orbits are periodic with the Sun’s motion around the Earth-Moon system. The continuation method then starts from a classical libration point orbit with a suitable period and increases the solar sail acceleration magnitude to obtain families of orbits that are parametrised by this acceleration. Furthermore, different solar sail steering laws are considered (both in-plane and out-of-plane, and either fixed in the synodic frame or fixed with respect to the direction of sunlight), adding to the wealth of families of solar sail enabled libration point orbits presented. Finally, the linear stability properties of the generated orbits are investigated to assess the need for active orbital control. It is shown that the solar sail induced acceleration can have a positive effect on the stability of some orbit families, especially those at the L2 point, but that it most often (further) destabilises the orbit. Active control will therefore be needed to ensure long-term survivability of these orbits
    • …
    corecore