67 research outputs found

    Binary collisions of charged particles in a magnetic field

    Full text link
    Binary collisions between charged particles in an external magnetic field are considered in second-order perturbation theory, starting from the unperturbed helical motion of the particles. The calculations are done with the help of an improved binary collisions treatment which is valid for any strength of the magnetic field, where the second-order energy and velocity transfers are represented in Fourier space for arbitrary interaction potentials. The energy transfer is explicitly calculated for a regularized and screened potential which is both of finite range and non-singular at the origin, and which involves as limiting cases the Debye (i.e., screened) and Coulomb potential. Two distinct cases are considered in detail. (i) The collision of two identical (e.g., electron-electron) particles; (ii) and the collision between a magnetized electron and an uniformly moving heavy ion. The energy transfer involves all harmonics of the electron cyclotron motion. The validity of the perturbation treatment is evaluated by comparing with classical trajectory Monte--Carlo calculations which also allows to investigate the strong collisions with large energy and velocity transfer at low velocities. For large initial velocities on the other hand, only small velocity transfers occur. There the non-perturbative numerical classical trajectory Monte--Carlo results agree excellently with the predictions of the perturbative treatment.Comment: submitted to Phys. Rev.

    Cooling force on ions in a magnetized electron plasma

    Full text link
    Electron cooling is a well-established method to improve the phase space quality of ion beams in storage rings. In the common rest frame of the ion and the electron beam the ion is subjected to a drag force and it experiences a loss or a gain of energy which eventually reduces the energy spread of the ion beam. A calculation of this process is complicated as the electron velocity distribution is anisotropic and the cooling process takes place in a magnetic field which guides the electrons. In this paper the cooling force is calculated in a model of binary collisions (BC) between ions and magnetized electrons, in which the Coulomb interaction is treated up to second-order as a perturbation to the helical motion of the electrons. The calculations are done with the help of an improved BC theory which is uniformly valid for any strength of the magnetic field and where the second-order two-body forces are treated in the interaction in Fourier space without specifying the interaction potential. The cooling force is explicitly calculated for a regularized and screened potential which is both of finite range and less singular than the Coulomb interaction at the origin. Closed expressions are derived for monochromatic electron beams, which are folded with the velocity distributions of the electrons and ions. The resulting cooling force is evaluated for anisotropic Maxwell velocity distributions of the electrons and ions.Comment: 22 pages, 10 figure

    New approach for the induced charge calculation for cylindrical electrodes

    Get PDF

    Energy transfer in binary collisions of two gyrating charged particles in a magnetic field

    Full text link
    Binary collisions of the gyrating charged particles in an external magnetic field are considered within a classical second-order perturbation theory, i.e., up to contributions which are quadratic in the binary interaction, starting from the unperturbed helical motion of the particles. The calculations are done with the help of a binary collisions treatment which is valid for any strength of the magnetic field and involves all harmonics of the particles cyclotron motion. The energy transfer is explicitly calculated for a regularized and screened potential which is both of finite range and nonsingular at the origin. The validity of the perturbation treatment is evaluated by comparing with classical trajectory Monte Carlo (CTMC) calculations which also allow to investigate the strong collisions with large energy and velocity transfer at low velocities. For large initial velocities on the other hand, only small velocity transfers occur. There the nonperturbative numerical CTMC results agree excellently with the predictions of the perturbative treatment.Comment: 12 pages, 4 figure

    Simulation of Resistive Cooling in cylindrical Penning Traps

    Get PDF

    Nonlinear response of electrons to a positive ion

    Full text link
    Electric field dynamics at a positive ion imbedded in an electron gas is considered using a semiclassical description. The dependence of the field autocorrelation function on charge number is studied for strong ion-electron coupling via MD simulation. The qualitative features for larger charge numbers are a decreasing correlation time followed by an increasing anticorrelation. Stopping power and related transport coefficients determined by the time integral of this correlation function result from the competing effects of increasing initial correlations and decreasing dynamical correlations. An interpretation of the MD results is obtained from an effective single particle model showing good agreement with the simulation results.Comment: To be published in the proceedings of the International Workshop on Strongly Coupled Coulomb Systems, Journal of Physics

    Microfield distributions in strongly coupled two-component plasmas

    Full text link
    The electric microfield distribution at charged particles is studied for two-component electron-ion plasmas using molecular dynamics simulation and theoretical models. The particles are treated within classical statistical mechanics using an electron-ion Coulomb potential regularized at distances less than the de Broglie length to take into account the quantum-diffraction effects. The potential-of-mean-force (PMF) approximation is deduced from a canonical ensemble formulation. The resulting probability density of the electric microfield satisfies exactly the second-moment sum rule without the use of adjustable parameters. The correlation functions between the charged radiator and the plasma ions and electrons are calculated using molecular dynamics simulations and the hypernetted-chain approximation for a two-component plasma. It is shown that the agreement between the theoretical models for the microfield distributions and the simulations is quite good in general.Comment: 18 figures. Submitted to Phys. Rev.

    Wigner function quantum molecular dynamics

    Full text link
    Classical molecular dynamics (MD) is a well established and powerful tool in various fields of science, e.g. chemistry, plasma physics, cluster physics and condensed matter physics. Objects of investigation are few-body systems and many-body systems as well. The broadness and level of sophistication of this technique is documented in many monographs and reviews, see for example \cite{Allan,Frenkel,mdhere}. Here we discuss the extension of MD to quantum systems (QMD). There have been many attempts in this direction which differ from one another, depending on the type of system under consideration. One direction of QMD has been developed for condensed matter systems and will not discussed here, e.g. \cite{fermid}. In this chapter we are dealing with unbound electrons as they occur in gases, fluids or plasmas. Here, one strategy is to replace classical point particles by wave packets, e.g. \cite{fermid,KTR94,zwicknagel06} which is quite successful. At the same time, this method struggles with problems related to the dispersion of such a packet and difficulties to properly describe strong electron-ion interaction and bound state formation. We, therefore, avoid such restrictions and consider a completely general alternative approach. We start discussion of quantum dynamics from a general consideration of quantum distribution functions.Comment: 18 pages, based on lecture at Hareaus school on computational phyics, Greifswald, September 200

    Strong-coupling effects in the relaxation dynamics of ultracold neutral plasmas

    Full text link
    We describe a hybrid molecular dynamics approach for the description of ultracold neutral plasmas, based on an adiabatic treatment of the electron gas and a full molecular dynamics simulation of the ions, which allows us to follow the long-time evolution of the plasma including the effect of the strongly coupled ion motion. The plasma shows a rather complex relaxation behavior, connected with temporal as well as spatial oscillations of the ion temperature. Furthermore, additional laser cooling of the ions during the plasma evolution drastically modifies the expansion dynamics, so that crystallization of the ion component can occur in this nonequilibrium system, leading to lattice-like structures or even long-range order resulting in concentric shells
    corecore