195 research outputs found

    Regulación de la expresión de acuaporina-4 por hormonas ováricas en el contexto de encefalopatía hiponatrémica

    Get PDF
    Las mujeres en edad reproductiva son un grupo de riesgo para el desarrollo de daño cerebral secundario a encefalopatía hiponatrémica. Este hallazgo se ha confirmado también en modelos animales. La acuaporina-4 (AQP4), isoforma más abundante en el cerebro, se considera como un modulador crítico de la homeostasis del agua y los iones en el cerebro. Previamente demostramos que la expresión de AQP4 en el cerebro muestra dimorfismo sexual. En un modelo experimental de encefalopatía hiponatrémica en ratas vimos que la expresión proteica de AQP4 aumentaba significativamente en ratas hembras hiponatremicas. Sin embargo no se conoce cuál es el mecanismo que produce este aumento.Facultad de Ciencias Médica

    Regulación de la expresión de acuaporina-4 por hormonas ováricas en el contexto de encefalopatía hiponatrémica

    Get PDF
    Las mujeres en edad reproductiva son un grupo de riesgo para el desarrollo de daño cerebral secundario a encefalopatía hiponatrémica. Este hallazgo se ha confirmado también en modelos animales. La acuaporina-4 (AQP4), isoforma más abundante en el cerebro, se considera como un modulador crítico de la homeostasis del agua y los iones en el cerebro. Previamente demostramos que la expresión de AQP4 en el cerebro muestra dimorfismo sexual. En un modelo experimental de encefalopatía hiponatrémica en ratas vimos que la expresión proteica de AQP4 aumentaba significativamente en ratas hembras hiponatremicas. Sin embargo no se conoce cuál es el mecanismo que produce este aumento.Facultad de Ciencias Médica

    Neon seeding effects on two high-performance baseline plasmas on the Joint European Torus

    Get PDF
    We present the JETTO-QuaLiKiz-SANCO fully predictive modelling of two JET-ILW high-performance baseline plasmas, a Ne seeded shot and an equivalent unseeded one. The motivation of the work lies in the experimental observation of a slightly higher confinement and performance of the Ne seeded shot with respect to the unseeded one, despite sharing the same main plasma parameters and heating powers. Moreover, the neon seeded shot shows a lower pedestal electron density and a higher core ion temperature with respect to the unseeded one. Integrated modelling is performed in order to understand if the cause of the improved confinement has to be ascribed to the improved pedestal parameters with neon seeding or if an impurity-induced turbulence stabilization is at play. The QuaLiKiz transport model is used for predicting the electron density, electron and ion temperatures and rotation in the core up to the pedestal top, while the pedestal is empirically modelled to reproduce the experimental kinetic profiles. The thermal diffusivities of the two shots, computed by QuaLiKiz, are compared, as well as the turbulence spectra, suggesting that the reduced transport found in the neon seeded shot is due in part to the stabilization of ion temperature gradient and electron temperature gradient modes. Further modelling is performed in order to disentangle the neon seeding effects, which are a direct effect on the turbulence stabilization and an indirect effect on the pedestal parameters. The results suggest that the improved performance with neon is due to a combination of turbulence stabilization and improved pedestal parameters

    Genome-wide analysis of expansin superfamily in wild Arachis discloses a stress-responsive expansin-like B gene

    Get PDF
    Expansins are plant cell wall-loosening proteins involved in adaptive responses to environmental stimuli and various developmental processes. The first genome-wide analysis of the expansin superfamily in the Arachis genus identified 40 members in A. duranensis and 44 in A. ipaënsis, the wild progenitors of cultivated peanut (A. hypogaea). These expansins were further characterized regarding their subfamily classification, distribution along the genomes, duplication events, molecular structure, and phylogeny. A RNA-seq expression analysis in different Arachis species showed that the majority of these expansins are modulated in response to diverse stresses such as water deficit, rootknot nematode (RKN) infection, and UV exposure, with an expansin-like B gene (AraEXLB8) displaying a highly distinct stress-responsive expression profile. Further analysis of the AraEXLB8 coding sequences showed high conservation across the Arachis genotypes, with eight haplotypes identified. The modulation of AraEXLB8 expression in response to the aforementioned stresses was confirmed by qRT-PCR analysis in distinct Arachis genotypes, whilst in situ hybridization revealed transcripts in different root tissues according to the stress imposed. The overexpression of AraEXLB8 in soybean (Glycine max) composite plants remarkably decreased the number of galls in transformed hairy roots inoculated with RKN. This study improves the current understanding of the molecular evolution, divergence, and gene expression of expansins in Arachis, and provides molecular and functional insights into the role of expansin-like B, the less-studied plant expansin subfamily

    Contrasting Effects of Wild Arachis Dehydrin Under Abiotic and Biotic Stresses

    Get PDF
    Plant dehydrins (DNHs) belong to the LEA (Late Embryogenesis Abundant) protein family and are involved in responses to multiple abiotic stresses. DHNs are classified into five subclasses according to the organization of three conserved motifs (K-; Y-; and S-segments). In the present study, the DHN protein family was characterized by molecular phylogeny, exon/intron organization, protein structure, and tissue-specificity expression in eight Fabaceae species. We identified 20 DHN genes, encompassing three (YnSKn, SKn, and Kn) subclasses sharing similar gene organization and protein structure. Two additional low conserved DHN Φ-segments specific to the legume SKn-type of proteins were also found. The in silico expression patterns of DHN genes in four legume species (Arachis duranensis, A. ipaënsis, Glycine max, and Medicago truncatula) revealed that their tissue-specific regulation is associated with the presence or absence of the Y-segment. Indeed, DHN genes containing a Y-segment are mainly expressed in seeds, whereas those without the Y-segment are ubiquitously expressed. Further qRT-PCR analysis revealed that, amongst stress responsive dehydrins, a SKn-type DHN gene from A. duranensis (AdDHN1) showed opposite response to biotic and abiotic stress with a positive regulation under water deficit and negative regulation upon nematode infection. Furthermore, transgenic Arabidopsis lines overexpressing (OE) AdDHN1 displayed improved tolerance to multiple abiotic stresses (freezing and drought) but increased susceptibility to the biotrophic root-knot nematode (RKN) Meloidogyne incognita. This contradictory role of AdDHN1 in responses to abiotic and biotic stresses was further investigated by qRT-PCR analysis of transgenic plants using a set of stress-responsive genes involved in the abscisic acid (ABA) and jasmonic acid (JA) signaling pathways and suggested an involvement of DHN overexpression in these stress-signaling pathways

    Overview of the FTU results

    Get PDF
    Since the 2018 IAEA FEC Conference, FTU operations have been devoted to several experiments covering a large range of topics, from the investigation of the behaviour of a liquid tin limiter to the runaway electrons mitigation and control and to the stabilization of tearing modes by electron cyclotron heating and by pellet injection. Other experiments have involved the spectroscopy of heavy metal ions, the electron density peaking in helium doped plasmas, the electron cyclotron assisted start-up and the electron temperature measurements in high temperature plasmas. The effectiveness of the laser induced breakdown spectroscopy system has been demonstrated and the new capabilities of the runaway electron imaging spectrometry system for in-flight runaways studies have been explored. Finally, a high resolution saddle coil array for MHD analysis and UV and SXR diamond detectors have been successfully tested on different plasma scenarios

    New H-mode regimes with small ELMs and high thermal confinement in the Joint European Torus

    Get PDF
    New H-mode regimes with high confinement, low core impurity accumulation, and small edge-localized mode perturbations have been obtained in magnetically confined plasmas at the Joint European Torus tokamak. Such regimes are achieved by means of optimized particle fueling conditions at high input power, current, and magnetic field, which lead to a self-organized state with a strong increase in rotation and ion temperature and a decrease in the edge density. An interplay between core and edge plasma regions leads to reduced turbulence levels and outward impurity convection. These results pave the way to an attractive alternative to the standard plasmas considered for fusion energy generation in a tokamak with a metallic wall environment such as the ones expected in ITER.& nbsp;Published under an exclusive license by AIP Publishing

    Overview of JET results for optimising ITER operation

    Get PDF
    The JET 2019–2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major neutral beam injection upgrade providing record power in 2019–2020, and tested the technical and procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle (α) physics in the coming D–T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed shattered pellet injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design and operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D–T benefited from the highest D–D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER

    Spectroscopic camera analysis of the roles of molecularly assisted reaction chains during detachment in JET L-mode plasmas

    Get PDF
    The roles of the molecularly assisted ionization (MAI), recombination (MAR) and dissociation (MAD) reaction chains with respect to the purely atomic ionization and recombination processes were studied experimentally during detachment in low-confinement mode (L-mode) plasmas in JET with the help of experimentally inferred divertor plasma and neutral conditions, extracted previously from filtered camera observations of deuterium Balmer emission, and the reaction coefficients provided by the ADAS, AMJUEL and H2VIBR atomic and molecular databases. The direct contribution of MAI and MAR in the outer divertor particle balance was found to be inferior to the electron-atom ionization (EAI) and electron-ion recombination (EIR). Near the outer strike point, a strong atom source due to the D+2-driven MAD was, however, observed to correlate with the onset of detachment at outer strike point temperatures of Te,osp = 0.9-2.0 eV via increased plasma-neutral interactions before the increasing dominance of EIR at Te,osp < 0.9 eV, followed by increasing degree of detachment. The analysis was supported by predictions from EDGE2D-EIRENE simulations which were in qualitative agreement with the experimental observations
    corecore