67 research outputs found

    Investigating the basis of substrate recognition in the pC221 relaxosome

    Get PDF
    The nicking of the origin of transfer (oriT) is an essential initial step in the conjugative mobilization of plasmid DNA. In the case of staphylococcal plasmid pC221, nicking by the plasmid-specific MobA relaxase is facilitated by the DNA-binding accessory protein MobC; however, the role of MobC in this process is currently unknown. In this study, the site of MobC binding was determined by DNase I footprinting. MobC interacts with oriT DNA at two directly repeated 9 bp sequences, mcb1 and mcb2, upstream of the oriT nic site, and additionally at a third, degenerate repeat within the mobC gene, mcb3. The binding activity of the conserved sequences was confirmed indirectly by competitive electrophoretic mobility shift assays and directly by Surface Plasmon Resonance studies. Mutation at mcb2 abolished detectable nicking activity, suggesting that binding of this site by MobC is a prerequisite for nicking by MobA. Sequential site-directed mutagenesis of each binding site in pC221 has demonstrated that all three are required for mobilization. The MobA relaxase, while unable to bind to oriT DNA alone, was found to associate with a MobC–oriT complex and alter the MobC binding profile in a region between mcb2 and the nic site. Mutagenesis of oriT in this region defines a 7 bp sequence, sra, which was essential for nicking by MobA. Exchange of four divergent bases between the sra of pC221 and the related plasmid pC223 was sufficient to swap their substrate identity in a MobA-specific nicking assay. Based on these observations we propose a model of layered specificity in the assembly of pC221-family relaxosomes, whereby a common MobC:mcb complex presents the oriT substrate, which is then nicked only by the cognate MobA

    The stb Operon Balances the Requirements for Vegetative Stability and Conjugative Transfer of Plasmid R388

    Get PDF
    The conjugative plasmid R388 and a number of other plasmids carry an operon, stbABC, adjacent to the origin of conjugative transfer. We investigated the role of the stbA, stbB, and stbC genes. Deletion of stbA affected both conjugation and stability. It led to a 50-fold increase in R388 transfer frequency, as well as to high plasmid loss. In contrast, deletion of stbB abolished conjugation but provoked no change in plasmid stability. Deletion of stbC showed no effect, neither in conjugation nor in stability. Deletion of the entire stb operon had no effect on conjugation, which remained as in the wild-type plasmid, but led to a plasmid loss phenotype similar to that of the R388ΔstbA mutant. We concluded that StbA is required for plasmid stability and that StbA and StbB control conjugation. We next observed the intracellular positioning of R388 DNA molecules and showed that they localize as discrete foci evenly distributed in live Escherichia coli cells. Plasmid instability of the R388ΔΔstbA mutant correlated with aberrant localization of the plasmid DNA molecules as clusters, either at one cell pole, at both poles, or at the cell center. In contrast, plasmid molecules in the R388ΔΔstbB mutant were mostly excluded from the cell poles. Thus, results indicate that defects in both plasmid maintenance and transfer are a consequence of variations in the intracellular positioning of plasmid DNA. We propose that StbA and StbB constitute an atypical plasmid stabilization system that reconciles two modes of plasmid R388 physiology: a maintenance mode (replication and segregation) and a propagation mode (conjugation). The consequences of this novel concept in plasmid physiology will be discussed

    Phage-inducible chromosomal islands are ubiquitous within the bacterial universe

    Get PDF
    Phage-inducible chromosomal islands (PICIs) are a recently discovered family of pathogenicity islands that contribute substantively to horizontal gene transfer, host adaptation and virulence in Gram-positive cocci. Here we report that similar elements also occur widely in Gram-negative bacteria. As with the PICIs from Gram-positive cocci, their uniqueness is defined by a constellation of features: unique and specific attachment sites, exclusive PICI genes, a phage-dependent mechanism of induction, conserved replication origin organization, convergent mechanisms of phage interference, and specific packaging of PICI DNA into phage-like infectious particles, resulting in very high transfer frequencies. We suggest that the PICIs represent two or more distinct lineages, have spread widely throughout the bacterial world, and have diverged much more slowly than their host organisms or their prophage cousins. Overall, these findings represent the discovery of a universal class of mobile genetic elements

    Phage N15 telomere resolution : target requirements for recognition and processing by the protelomerase

    No full text
    The Escherichia coli prophage N15 exists as a linear DNA molecule with covalently closed ends. Purified N15 protelomerase TelN is the only protein required to convert circular DNA substrates to the linear form with hairpin termini. Within the center of the telomerase occupancy site tos, the target for TelN is the 56-bp telRL consisting of the central 22-bp palindrome telO and two 14-bp flanking inverted sequence repetitions. DNase I footprinting of TelN-telRL complexes shows a segment of ~50 bp protected by TelN. Surface plasmon resonance studies demonstrate that this extended footprint is caused by two TelN molecules bound to telRL. Stable TelN-target DNA complexes are achieved with telRL; however, the additional sequences of tos stabilize the TelN-target complexes. TelO alone is not sufficient for specific stable complex formation. However, processing can occur, i.e. generation of the linear covalently closed DNA. Within the context of telRL, sequences of telO are involved in specific TelN-telRL complex formation, in processing itself, and/or in recognition of the processing site. The sequence of the central (CG)3 within telO that is part of a 14-bp stretch proposed to have Z-DNA conformation is essential for processing but not for formation of specific TelN-telRL complexes. The concerted action of both TelN molecules at the target site is the basis for telomere resolution. Capturing of reaction intermediates demonstrates that TelN binds covalently to the 3'-phosphoryl of the cleaved strands

    J Biol Chem

    No full text
    The Escherichia coli prophage N15 exists as a linear DNA molecule with covalently closed ends. Purified N15 protelomerase TelN is the only protein required to convert circular DNA substrates to the linear form with hairpin termini. Within the center of the telomerase occupancy site tos, the target for TelN is the 56-bp telRL consisting of the central 22-bp palindrome telO and two 14-bp flanking inverted sequence repetitions. DNase I footprinting of TelN-telRL complexes shows a segment of ~50 bp protected by TelN. Surface plasmon resonance studies demonstrate that this extended footprint is caused by two TelN molecules bound to telRL. Stable TelN-target DNA complexes are achieved with telRL; however, the additional sequences of tos stabilize the TelN-target complexes. TelO alone is not sufficient for specific stable complex formation. However, processing can occur, i.e. generation of the linear covalently closed DNA. Within the context of telRL, sequences of telO are involved in specific TelN-telRL complex formation, in processing itself, and/or in recognition of the processing site. The sequence of the central (CG)3 within telO that is part of a 14-bp stretch proposed to have Z-DNA conformation is essential for processing but not for formation of specific TelN-telRL complexes. The concerted action of both TelN molecules at the target site is the basis for telomere resolution. Capturing of reaction intermediates demonstrates that TelN binds covalently to the 3'-phosphoryl of the cleaved strands

    J Biol Chem

    No full text
    KorB is a regulatory protein encoded by the conjugative plasmid RP4 and a member of the ParB family of bacterial partitioning proteins. The protein regulates the expression of plasmid genes whose products are involved in replication, transfer, and stable inheritance of RP4 by binding to palindromic 13-bp DNA sequences (5'-TTTAGC(G/C)GCTAAA-3') present 12 times in the 60-kb plasmid. Here we report the crystal structure of KorB-C, the C-terminal domain of KorB comprising residues 297-358. The structure of KorB-C was solved in two crystal forms. Quite unexpectedly, we find that KorB-C shows a fold closely resembling the Src homology 3 (SH3) domain, a fold well known from proteins involved in eukaryotic signal transduction. From the arrangement of molecules in the asymmetric unit, it is concluded that two molecules form a functionally relevant dimer. The detailed analysis of the dimer interface and a chemical cross-linking study suggest that the C-terminal domain is responsible for stabilizing the dimeric form of KorB in solution to facilitate binding to the palindromic operator sequence. The KorB-C crystal structure extends the range of protein-protein interactions known to be promoted by SH3 and SH3-like domains

    An Src homology 3-like domain is responsible for dimerization of the repressor protein KorB encoded by the promiscuous IncP plasmid RP4

    No full text
    KorB is a regulatory protein encoded by the conjugative plasmid RP4 and a member of the ParB family of bacterial partitioning proteins. The protein regulates the expression of plasmid genes whose products are involved in replication, transfer, and stable inheritance of RP4 by binding to palindromic 13-bp DNA sequences (5′-TTTAGC(G/C)GCTAAA-3′) present 12 times in the 60-kb plasmid. Here we report the crystal structure of KorB-C, the C-terminal domain of KorB comprising residues 297-358. The structure of KorB-C was solved in two crystal forms. Quite unexpectedly, we find that KorB-C shows a fold closely resembling the Src homology 3 (SH3) domain, a fold well known from proteins involved in eukaryotic signal transduction. From the arrangement of molecules in the asymmetric unit, it is concluded that two molecules form a functionally relevant dimer. The detailed analysis of the dimer interface and a chemical cross-linking study suggest that the C-terminal domain is responsible for stabilizing the dimeric form of KorB in solution to facilitate binding to the palindromic operator sequence. The KorB-C crystal structure extends the range of protein-protein interactions known to be promoted by SH3 and SH3-like domains
    corecore