6,498 research outputs found

    Hydrodynamical simulations of colliding jets:modeling 3C 75

    Get PDF
    Radio observations suggest that 3C 75, located in the dumbbell shaped galaxy NGC 1128 at the center of Abell 400, hosts two colliding jets. Motivated by this source, we perform three-dimensional hydrodynamical simulations using a modified version of the GPU-accelerated Adaptive-MEsh-Refinement hydrodynamical parallel code (GAMER\mathit{GAMER}) to study colliding extragalactic jets. We find that colliding jets can be cast into two categories: 1) bouncing jets, in which case the jets bounce off each other keeping their identities, and 2) merging jets, when only one jet emerges from the collision. Under some conditions the interaction causes the jets to break up into oscillating filaments of opposite helicity, with consequences for their downstream stability. When one jet is significantly faster than the other and the impact parameter is small, the jets merge; the faster jet takes over the slower one. In the case of merging jets, the oscillations of the filaments, in projection, may show a feature which resembles a double helix, similar to the radio image of 3C 75. Thus we interpret the morphology of 3C 75 as a consequence of the collision of two jets with distinctly different speeds at a small impact parameter, with the faster jet breaking up into two oscillating filaments.Comment: 13 pages, 9 figures, accepted for publication in Ap

    Galaxy Cluster Scaling Relations between Bolocam Sunyaev-Zel'dovich Effect and Chandra X-ray Measurements

    Get PDF
    We present scaling relations between the integrated Sunyaev-Zel'dovich Effect (SZE) signal, YSZY_{\rm SZ}, its X-ray analogue, YXMgasTXY_{\rm X}\equiv M_{\rm gas}T_{\rm X}, and total mass, MtotM_{\rm tot}, for the 45 galaxy clusters in the Bolocam X-ray-SZ (BOXSZ) sample. All parameters are integrated within r2500r_{2500}. Y2500Y_{2500} values are measured using SZE data collected with Bolocam, operating at 140 GHz at the Caltech Submillimeter Observatory (CSO). The temperature, TXT_{\rm X}, and mass, Mgas,2500M_{\rm gas,2500}, of the intracluster medium are determined using X-ray data collected with Chandra, and MtotM_{\rm tot} is derived from MgasM_{\rm gas} assuming a constant gas mass fraction. Our analysis accounts for several potential sources of bias, including: selection effects, contamination from radio point sources, and the loss of SZE signal due to noise filtering and beam-smoothing effects. We measure the Y2500Y_{2500}--YXY_{\rm X} scaling to have a power-law index of 0.84±0.070.84\pm0.07, and a fractional intrinsic scatter in Y2500Y_{2500} of (21±7)%(21\pm7)\% at fixed YXY_{\rm X}, both of which are consistent with previous analyses. We also measure the scaling between Y2500Y_{2500} and M2500M_{2500}, finding a power-law index of 1.06±0.121.06\pm0.12 and a fractional intrinsic scatter in Y2500Y_{2500} at fixed mass of (25±9)%(25\pm9)\%. While recent SZE scaling relations using X-ray mass proxies have found power-law indices consistent with the self-similar prediction of 5/3, our measurement stands apart by differing from the self-similar prediction by approximately 5σ\sigma. Given the good agreement between the measured Y2500Y_{2500}--YXY_{\rm X} scalings, much of this discrepancy appears to be caused by differences in the calibration of the X-ray mass proxies adopted for each particular analysis.Comment: 31 pages, 15 figures, accepted by ApJ 04/11/2015. This version is appreciably different from the original submission: it includes an entirely new appendix, extended discussion, and much of the material has been reorganize

    Exploring Early Parton Momentum Distribution with the Ridge from the Near-Side Jet

    Full text link
    In a central nucleus-nucleus collision at high-energies, medium partons kicked by a near-side jet acquire a momentum along the jet direction and subsequently materialize as the observed ridge particles. They carry direct information on the early parton momentum distribution which can be extracted by using the ridge data for central AuAu collisions at \sqrt{s_{NN}}=200 GeV. The extracted parton momentum distribution has a thermal-like transverse momentum distribution but a non-Gaussian, relatively flat rapidity distribution at mid-rapidity with sharp kinematic boundaries at large rapidities that depend on the transverse momentum.Comment: In Proceedings of 20th International Conference on Ultra-Relativistic Nucleus Nucleus Collisions, Jaipur, India, Feb. 4-10, 200

    Entropy Bound and Causality Violation in Higher Curvature Gravity

    Full text link
    In any quantum theory of gravity we do expect corrections to Einstein gravity to occur. Yet, at fundamental level, it is not apparent what the most relevant corrections are. We argue that the generic curvature square corrections present in lower dimensional actions of various compactified string theories provide a natural passage between the classical and quantum realms of gravity. The Gauss-Bonnet and (Riemann)2({\rm Riemann})^2 gravities, in particular, provide concrete examples in which inconsistency of a theory, such as, a violation of microcausality, and a classical limit on black hole entropy are correlated. In such theories the ratio of the shear viscosity to the entropy density, η/s\eta/s, can be smaller than for a boundary conformal field theory with Einstein gravity dual. This result is interesting from the viewpoint that the nuclear matter or quark-gluon plasma produced (such as at RHIC) under extreme densities and temperatures may violate the conjectured bound η/s1/4π\eta/s\ge 1/4\pi, {\it albeit} marginally so.Comment: 23 pages, several eps figures; minor changes, references added, published versio

    VISHNU hybrid model for viscous QCD matter at RHIC and LHC energies

    Full text link
    In this proceeding, we briefly describe the viscous hydrodynamics + hadron cascade hybrid model VISHNU for relativistic heavy ion collisions and report the current status on extracting the QGP viscosity from elliptic flow data.Comment: 4 pages, 1 figure, the proceedings of 7th International Workshop on Critical Point and Onset of Deconfinement, Wuhan, China, Nov. 7-11, 201

    Micro-Auger Electron Spectroscopy Studies of Chemical and Electronic Effects at GaN-Sapphire Interfaces

    Get PDF
    We have used cross-sectional micro-Auger electron spectroscopy (AES), coupled with micro-cathodoluminescence (CLS) spectroscopy, in a UHV scanning electron microscope to probe the chemical and related electronic features of hydride vapor phase epitaxy GaN/sapphire interfaces on a nanometer scale. AES images reveal dramatic evidence for micron-scale diffusion of O from Al2O3 into GaN. Conversely, plateau concentrations of N can extend microns into the sapphire, corresponding spatially to a 3.8 eV defect emission and Auger chemical shifts attributed to Al-N-O complexes. Interface Al Auger signals extending into GaN indicates AlGaN alloy formation, consistent with a blue-shifted CLS local interface emission. The widths of such interface transition regions range from ≪100 nm to ∼1 μm, depending on surface pretreatment and growth conditions. Secondary ion mass spectroscopy depth profiles confirm the elemental character and spatial extent of diffusion revealed by micro-AES, showing that cross-sectional AES is a useful approach to probe interdiffusion and electronic properties at buried interfaces

    Certified compilation for cryptography: Extended x86 instructions and constant-time verification

    Get PDF
    We present a new tool for the generation and verification of high-assurance high-speed machine-level cryptography implementations: a certified C compiler supporting instruction extensions to the x86. We demonstrate the practical applicability of our tool by incorporating it into supercop: a toolkit for measuring the performance of cryptographic software, which includes over 2000 different implementations. We show i. that the coverage of x86 implementations in supercop increases significantly due to the added support of instruction extensions via intrinsics and ii. that the obtained verifiably correct implementations are much closer in performance to unverified ones. We extend our compiler with a specialized type system that acts at pre-assembly level; this is the first constant-time verifier that can deal with extended instruction sets. We confirm that, by using instruction extensions, the performance penalty for verifiably constant-time code can be greatly reduced.This work is financed by National Funds through the FCT - Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within the project PTDC/CCI-INF/31698/2017, and by the Norte Portugal Regional Operational Programme (NORTE 2020) under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF) and also by national funds through the FCT, within project NORTE-01-0145-FEDER-028550 (REASSURE)

    A weak compact jet in a soft state of Cygnus X-1

    Get PDF
    We present evidence for the presence of a weak compact jet during a soft X-ray state of Cygnus X-1. Very-high-resolution radio observations were taken with the VLBA, EVN and MERLIN during a hard-to-soft spectral state change, showing the hard state jet to be suppressed by a factor of about 3-5 in radio flux and unresolved to direct imaging observations (i.e. < 1 mas at 4 cm). High time-resolution X-ray observations with the RXTE-PCA were also taken during the radio monitoring period, showing the source to make the transition from the hard state to a softer state (via an intermediate state), although the source may never have reached the canonical soft state. Using astrometric VLBI analysis and removing proper motion, parallax and orbital motion signatures, the residual positions show a scatter of ~0.2 mas (at 4 cm) and ~3 mas (at 13 cm) along the position angle of the known jet axis; these residuals suggest there is a weak unresolved outflow, with varying size or opacity, during intermediate and soft X-ray states. Furthermore, no evidence was found for extended knots or shocks forming within the jet during the state transition, suggesting the change in outflow rate may not be sufficiently high to produce superluminal knots.Comment: Accepted in MNRAS; 4 figures and 1 tabl
    corecore