2,396 research outputs found

    Foreward

    Get PDF

    Foreward

    Get PDF

    Foreword

    Get PDF

    Foreword

    Get PDF

    Rethinking the Modification of Child Custody Decrees

    Get PDF

    Foreword

    Get PDF

    A method for assessing the success and failure of community-level interventions in the presence of network diffusion, social reinforcement, and related social effects

    Get PDF
    Prevention and intervention work done within community settings often face unique analytic challenges for rigorous evaluations. Since community prevention work (often geographically isolated) cannot be controlled in the same way other prevention programs and these communities have an increased level of interpersonal interactions, rigorous evaluations are needed. Even when the `gold standard' randomized control trials are implemented within community intervention work, the threats to internal validity can be called into question given informal social spread of information in closed network settings. A new prevention evaluation method is presented here to disentangle the social influences assumed to influence prevention effects within communities. We formally introduce the method and it's utility for a suicide prevention program implemented in several Alaska Native villages. The results show promise to explore eight sociological measures of intervention effects in the face of social diffusion, social reinforcement, and direct treatment. Policy and research implication are discussed.Comment: 18 pages, 5 figure

    Lorentz shear modulus of fractional quantum Hall states

    Get PDF
    We show that the Lorentz shear modulus of macroscopically homogeneous electronic states in the lowest Landau level is proportional to the bulk modulus of an equivalent system of interacting classical particles in the thermodynamic limit. Making use of this correspondence we calculate the Lorentz shear modulus of Laughlin's fractional quantum Hall states at filling factor ν=1/m\nu=1/m (mm an odd integer) and find that it is equal to ±mn/4\pm \hbar mn/4, where nn is the density of particles and the sign depends on the direction of magnetic field. This is in agreement with the recent result obtained by Read in arXiv:0805.2507 and corrects our previous result published in Phys. Rev. B {\bf 76}, 161305 (R) (2007).Comment: 8 pages, 3 figure
    corecore