153 research outputs found

    Topographic hub maps of the human structural neocortical network

    Get PDF
    Hubs within the neocortical structural network determined by graph theoretical analysis play a crucial role in brain function. We mapped neocortical hubs topographically, using a sample population of 63 young adults. Subjects were imaged with high resolution structural and diffusion weighted magnetic resonance imaging techniques. Multiple network configurations were then constructed per subject, using random parcellations to define the nodes and using fibre tractography to determine the connectivity between the nodes. The networks were analysed with graph theoretical measures. Our results give reference maps of hub distribution measured with betweenness centrality and node degree. The loci of the hubs correspond with key areas from known overlapping cognitive networks. Several hubs were asymmetrically organized across hemispheres. Furthermore, females have hubs with higher betweenness centrality and males have hubs with higher node degree. Female networks have higher small-world indices

    SWI-informed diffusion tensor tractography

    Get PDF
    Introduction In diffusion tensor tractography (DTT), white matter structure is inferred in vivo by reconstructing fiber tracts from diffusion weighted images (DWI). Recently [1], white matter structure has also been shown at 7T using susceptibility weighted imaging (SWI) [2]. Most notably, SWI shows excellent contrast between the highly myelinated optic radiation (OR) and the surrounding white matter [3]. Because DTT attempts to reconstruct tracts from voxels orders of magnitude larger than the underlying substrate, it suffers from partial volume effects in voxels that contain multiple or incoherently oriented tracts, resulting in false positive and false negative tracts. Tractography might therefore benefit from the combination of the diffusion tensor with the white matter contrasts in SWI which can be obtained at a much higher resolution. We have adapted a DTT algorithm to include the structure tensor [4] of the SWI magnitude in order to improve tractography in locations where DWI and SWI provide complementary information. Methods DWI (3T; 32-ch coil; twice-refocused spin echo EPI; 61+7 gradient directions; b=1000 s/mm2; TR=8300 ms; TE=95 ms; matrix size=110x110; FOV=220x220 mm; slice thickness=2.0 mm; number of slices=64) and SWI (7T; 8-ch coil; sagittal orientation; TR=36 ms; TE=25 ms; flip angle=15°; matrix size=448x336; FOV=224x168 mm; slice thickness=0.5 mm; number of slices=208; BW=120 Hz/px; acquisition time=20 min) were recorded from a healthy volunteer. The DWI mean b0 image and SWI were bias field corrected and then coregistered with FSL using the normalized mutual information algorithm and weighting volumes. The diffusion tensor and structure tensor fields were reconstructed from the DWI and SWI volumes, respectively. The structure tensor was calculated as the partial derivatives [dxx,dxy,dxz; dyx,dyy,dyz; dzx,dzy,dzz] of the SWI magnitude and every structure tensor component was smoothed (FWHM = 2.5 mm). Tractography was performed using Camino (PICo; 5000 iterations; curvature threshold = 80º; FA threshold = 0.10; step size = 0.50 mm). The structure tensor information was incorporated by requiring that the tracking direction be in the plane orthogonal to the first eigenvector of the structure tensor (ST ϵ1). This plane is assumed to be aligned to the direction of the tract that causes the intensity variation. The tracking direction within this plane is determined as the projection of the diffusion tensor onto the plane. To avoid adapted tracking directions where the structure tensor was non-informative, it was used only if the first eigenvalue of the structure tensor (ST λ1) > 100. For evaluating the performance, seeds were placed in the OR posterior to the point where it merged with the splenium of the corpus callosum (SCC). Waypoints were created anterior to the split in both the OR and SCC. Fractions of streamlines crossing these waypoints were extracted for both DTT and SWI-informed DTT. Results and Discussion Although the main tracts were similar for both DTT and SWI-informed DTT, the algorithms often showed very different branching patterns and more subtle differences in the course of the tracts. Examples are provided in Fig 1&2. In Fig 1 a putatively more accurate tracking of the OR using SWI-informed DTT compared to DTT is shown after seeding in the posterior OR. The seed at the merging of the OR and the SCC resulted in markedly different results for DTT and SWI-informed DTT (Fig 2). Frontal branches emerged for SWI-informed DTT, but not for DTT. A presumably non-veridical split is seen in the SCC for SWI-informed DTT (black arrow), where the structure tensor seems to cause a bias towards the borders of the tract. Fractions of streamlines entering OR/SCC were 0.026 for DTT vs. 0.336 for SWI-informed DTT. Conclusions A modification of a method was proposed to overcome some limitations of diffusion tensor tractography. It was shown that the contrast within the white matter in susceptibility weighted images can provide additional information for tractography algorithms, leading to increased sensitivity at specific locations. To have an unambiguous validation of the findings of SWI-informed DTT, an ex vivo validation of white matter connectivity has to be performed. We have shown that SWI-informed DTT reveals white matter fiber tracts that were not found using standard DTT

    Superior localisation and imaging of radiolabelled monoclonal antibody E48 F(ab')2 fragment in xenografts of human squamous cell carcinoma of the head and neck and of the vulva as compared to monoclonal antibody E48 IgG.

    Get PDF
    Monoclonal antibody (MAb) E48 and its F(ab')2 fragment, radiolabelled with 131I, were tested for tumour localisation and imaging in nude mice bearing a squamous cell carcinoma xenograft line derived from a head and neck carcinoma (HNX-HN) or from a vulva carcinoma (VX-A431). MAb IgG or F(ab')2 fragments were injected in parallel and at day 1, 2, 3 and 6 or 7, mice were either scanned with a gamma camera or dissected for determination of isotope biodistribution. In HNX-HN bearing mice, E48 IgG as well as F(ab')2 showed highly specific localisation in tumour tissue. The mean tumour uptake (n = 4) expressed as the percentage of the injected dose per gram of tumour tissue (percentage ID/g) of IgG was 11.9% at day 1 and increased to 14.6% at day 6 whereas percentage ID/g of F(ab')2 was 7.2% at day 1 and decreased during subsequent days. Tumour to blood ratios (T/B) at day 1 were 1.2 for IgG and 13.6 for F(ab')2 and reached a maximum at day 6 with values of 6.4 and 54.2 respectively. In VX-A431 bearing mice, only E48 F(ab')2 showed preferential localisation in tumour tissue. At day 1, Percentage ID/g of IgG was 3.7 and T/B was 0.3, while percentage ID/g of F(ab')2 was 2.4 and T/B was 3.2. Percentage ID/g decreased after day 1 while T/B increased. In these experiments no preferential localisation of either isotype matched 125I-labelled control IgG or F(ab')2 was observed. In F(ab')2 injected HNX-HN bearing mice as well as VX-A431 bearing mice, tumours could be visualised at day 1 and 2 without any appreciable background activity. With MAb IgG this was also possible in HNX-HN bearing mice (but not in VX-A431 bearing mice) but only at day 3 and 6. These findings suggest that the superior tumour to non-tumour ratios render the E48 F(ab')2 fragment more qualified for specific targeting of radioisotopes to tumour xenografts in this experimental setting

    Quantification of fibrous cap thickness in intracoronary optical coherence tomography with a contour segmentation method based on dynamic programming

    Get PDF
    OBJECTIVES: Fibrous cap thickness is the most critical component of plaque stability. Therefore, in vivo quantification of cap thickness could yield valuable information for estimating the risk of plaque rupture. In the context of preoperative planning and perioperative decision making, intracoronary optical coherence tomography imaging can provide a very detailed characterization of the arterial wall structure. However, visual interpretation of the images is laborious, subject to variability, and therefore not always sufficiently reliable for immediate decision of treatment. METHODS: A novel semiautomatic segmentation method to quantify coronary fibrous cap thickness in optical coherence tomography is introduced. To cope with the most challenging issue when estimating cap thickness (namely the diffuse appearance of the anatomical abluminal interface to be detected), the proposed method is based on a robust dynamic programming framework using a geometrical a priori. To determine the optimal parameter settings, a training phase was conducted on 10 patients. RESULTS: Validated on a dataset of 179 images from 21 patients, the present framework could successfully extract the fibrous cap contours. When assessing minimal cap thickness, segmentation results from the proposed method were in good agreement with the reference tracings performed by a medical expert (mean absolute error and standard deviation of [Formula: see text] ) and were similar to inter-observer reproducibility ([Formula: see text] , R = .74), while being significantly faster and fully reproducible. CONCLUSION: The proposed framework demonstrated promising performances and could potentially be used for online identification of high-risk plaques

    Radioimmunotherapy of human head and neck squamous cell carcinoma xenografts with 131I-labelled monoclonal antibody E48 IgG.

    Get PDF
    Monoclonal antibody (MAb) E48 reacts with a 22 kD antigen exclusively expressed in squamous and transitional epithelia and their neoplastic counterparts. Radiolabelled with 99mTc, MAb E48 is capable of targeting metastatic and recurrent disease in patients with head and neck cancer. In this study, the capacity of 131I-labelled MAb E48 to eradicate xenografts of human squamous cell carcinoma of the head and neck (HNSCC) in nude mice was examined. Experimental groups received a single i.v. bolus injection of 400 microCi MAb E48 IgG (number of mice (n = 6, number of tumours (t) = 9) or 800 microCi MAb E48 IgG (n) = 5,t = 7), whereas control groups received either diluent (n = 3,t = 5), unlabelled MAb E48 IgG (n = 4,t = 5) or 800 microCi 131I-labelled isotype-matched control MAb (n = 6,t = 9). A 4.1-fold increase in the median tumour volume doubling time and regression of two out of ten tumours (20%) was observed in mice treated with 400 microCi. In mice treated with 800 microCi. In mice treated with 800 microCi, two out of seven tumours (29%) showed complete remission without regrowth during follow-up (greater than 3 months). Median tumour volume doubling time in the remaining five tumours was increased 7.8-fold. No antitumour effects were observed in mice injected with diluent, unlabelled MAb E48 or 131I-labelled control MAb. In the same xenograft model, chemotherapy with doxorubicin, 5-fluorouracil, cisplatin, bleomycin, methotrexate or 2',2'-difluorodeoxycytidine yielded a less profound effect on tumour volume doubling time. Increases in tumour volume doubling time with these chemotherapeutic agents were 4, 2.2, 2.1, 1.7, 0, and 2.6 respectively. Moreover, no cures were observed with any of these chemotherapeutic agents. From the tissue distribution of 800 microCi MAb E48, the absorbed cumulative radiation doses of tumour and various organs were calculated using the trapezoid integration method for the area under the curve. To tumour xenografts, 12,170 cGy was delivered, blood received 2,984 cGy, whereas in every other tissue the accumulated dose was less than 6% of the dose delivered to tumour. These data, describing the first radiolabelled MAb with therapeutic efficacy against HNSCC, suggest radioimmunotherapy with MAb E48 to be a potential therapeutic modality for the treatment of head and neck cancer

    Enhanced therapeutic efficacy of 5'deoxy-5-fluorouridine in 5-fluorouracil resistant head and neck tumours in relation to 5-fluorouracil metabolising enzymes.

    Get PDF
    Four human head and neck xenograft (HNX) tumour lines grown in nude mice and two murine colon carcinomas (Colon 26 and 38) were tested for their sensitivity to 5-fluorouracil (5-FU) and its prodrug 5'deoxy-5-fluorouridine (Doxifluridine, 5'd-FUR). 5-FU sensitivity at the maximum tolerated dose (MTD) showed the following pattern; HNX-DU less than HNX-KE = HNX-E = HNX-G less than Colon 26 much less than Colon 38. The sensitivity pattern to 5'd-FUR was: HNX-DU less than HNX-G less than HNX-E less than HNX-KE less than Colon 38 less than Colon 26. For HNX-KE, HNX-E and Colon 26 an increase in therapeutic efficacy was observed with 5'd-FUR as compared to 5-FU; Colon 38 was as sensitive to 5'd-FUR as to 5-FU. Plasma pharmacokinetics of 5'd-FUR and 5-FU were comparable in normal and nude mice. Metabolism of 5-FU and 5'd-FUR was studied in the tumours. Conversion of 5'd-FUR to 5-FU was highest in Colon 26 and 15-20 times lower in HNX-DU, HNX-KE and Colon 38. The Km for 5'd-FUR in all tumours was 1-2 mM. Further anabolism of 5-FU to fluorouridine (FUR) was 5-10 times higher than that of 5-FU to FUR in HNX tumours and 3 times in the colon tumours. 5-FU conversion to FUMP via FUR had the following pattern: Colon 26 much greater than HNX-DU greater than HNX-G greater than HNX-E greater than HNX-KE much greater than Colon 38; of 5-FU to FdUMP via FUdR: Colon 26 greater than HNX-DU = HNX-KE greater than HNX-E greater than HNX-G = Colon 38; and that of 5-FU to FUMP catalysed by orotate phosphoribosyl transferase (OPRT); Colon 26 greater than or equal to Colon 38 greater than HNX-KE greater than HNX-E = HNX-DU = HNX-G. Only those tumours with a relatively high activity of OPRT were sensitive to 5'd-FUR. Colon 26, which has a very high rate of pyrimidine nucleoside phosphorylase, showed a relatively high increase in the therapeutic efficacy. It is concluded that a low rate of pyrimidine nucleoside phosphorylase is enough to convert 5'd-FUR to 5-FU; further anabolism of 5-FU catalysed by OPRT may be limiting and explain the differential sensitivity

    Retinal OCT speckle as a biomarker for glaucoma diagnosis and staging

    Get PDF
    This paper presents a novel image analysis strategy that increases the potential of macular Optical Coherence Tomography (OCT) by using speckle features as biomarkers in different stages of glaucoma. A large pool of features (480) were computed for a subset of macular OCT volumes of the Leuven eye study cohort. The dataset contained 258 subjects that were divided into four groups based on their glaucoma severity: Healthy (56), Mild (94), Moderate (48), and Severe (60). The OCT speckle features were categorized as statistical properties, statistical distributions, contrast, spatial gray-level dependence matrices, and frequency domain features. The averaged thicknesses of ten retinal layers were also collected. Kruskal-Wallis H test and multivariable regression models were used to infer the most significant features related to glaucoma severity classification and to the correlation with visual field mean deviation. Four features were selected as being the most relevant: the ganglion cell layer (GCL) and the inner plexiform layer (IPL) thicknesses, and two OCT speckle features, the data skewness computed on the retinal nerve fiber layer (RNFL) and the scale parameter (a) of the generalized gamma distribution fitted to the GCL data. Based on a significance level of 0.05, the regression models revealed that RNFL skewness exhibited the highest significance among the features considered for glaucoma severity staging (p-values of 8.6×10-6 for the logistic model and 2.8×10-7 for the linear model). Furthermore, it demonstrated a strong negative correlation with the visual field mean deviation (ρ=-0.64). The post hoc analysis revealed that, when distinguishing healthy controls from glaucoma subjects, GCL thickness is the most relevant feature (p-value of 8.7×10-5). Conversely, when comparing the Mild versus Moderate stages of glaucoma, RNFL skewness emerged as the only feature exhibiting statistical significance (p-value = 0.001). This work shows that macular OCT speckle contains information that is currently not used in clinical practice, and not only complements structural measurements (thickness) but also has a potential for glaucoma staging

    autoTICI: Automatic Brain Tissue Reperfusion Scoring on 2D DSA Images of Acute Ischemic Stroke Patients

    Get PDF
    The Thrombolysis in Cerebral Infarction (TICI) score is an important metric for reperfusion therapy assessment in acute ischemic stroke. It is commonly used as a technical outcome measure after endovascular treatment (EVT). Existing TICI scores are defined in coarse ordinal grades based on visual inspection, leading to inter- and intra-observer variation. In this work, we present autoTICI, an automatic and quantitative TICI scoring method. First, each digital subtraction angiography (DSA) sequence is separated into four phases (non-contrast, arterial, parenchymal and venous phase) using a multi-path convolutional neural network (CNN), which exploits spatio-temporal features. The network also incorporates sequence level label dependencies in the form of a state-transition matrix. Next, a minimum intensity map (MINIP) is computed using the motion corrected arterial and parenchymal frames. On the MINIP image, vessel, perfusion and background pixels are segmented. Finally, we quantify the autoTICI score as the ratio of reperfused pixels after EVT. On a routinely acquired multi-center dataset, the proposed autoTICI shows good correlation with the extended TICI (eTICI) reference with an average area under the curve (AUC) score of 0.81. The AUC score is 0.90 with respect to the dichotomized eTICI. In terms of clinical outcome prediction, we demonstrate that autoTICI is overall comparable to eTICI.Comment: 10 pages; submitted to IEEE TM

    Mesenteric artery calcium scoring: a potential screening method for chronic mesenteric ischemia

    Get PDF
    Objective: A practical screening tool for chronic mesenteric ischemia (CMI) could facilitate early recognition and reduce undertreatment and diagnostic delay. This study explored the ability to discriminate CMI from non-CMI patients with a mesenteric artery calcium score (MACS). Methods: This retrospective study included CTAs of consecutive patients with suspected CMI in a tertiary referral center between April 2016 and October 2019. A custom-built software module, using the Agatston definition, was developed and used to calculate the MACS for the celiac artery (CA), superior mesenteric artery (SMA), and inferior mesenteric artery. Scoring was performed by two blinded observers. Interobserver agreement was determined using 39 CTAs scored independently by both observers. CMI was defined as sustained symptom improvement after treatment. Non-CMI patients were patients not diagnosed with CMI after a diagnostic workup and patients not responding to treatment. Results: The MACS was obtained in 184 patients, 49 CMI and 135 non-CMI. Interobserver agreement was excellent (intraclass correlation coefficient 0.910). The MACS of all mesenteric arteries was significantly higher in CMI patients than in non-CMI patients. ROC analysis of the combined MACS of CA + SMA showed an acceptable AUC (0.767), high sensitivity (87.8%), and high NPV (92.1%), when using a ≥ 29.7 CA + SMA MACS cutoff. Comparison of two CTAs, obtained in the same patient at different points in time with different scan and reconstruction parameters, was performed in 29 patients and revealed significant differences in MACSs. Conclusion: MACS seems a promising screening method for CMI, but correction for scan and reconstruction parameters is warranted. Key Points: • A mesenteric artery calcium score obtained in celiac artery and superior mesenteric artery ha
    corecore