
Computerized Medical Imaging and Graphics 108 (2023) 102256

A
0

Contents lists available at ScienceDirect

Computerized Medical Imaging and Graphics

journal homepage: www.elsevier.com/locate/compmedimag

Retinal OCT speckle as a biomarker for glaucoma diagnosis and staging
Pedro G. Vaz a,∗, Luisa Sanchez Brea b,c, Vania Bastos Silva a,b, Jan van Eijgen d,e,
Ingeborg Stalmans d,e, João Cardoso a, Theo van Walsum b, Stefan Klein b, João Barbosa Breda d,f,g,
Danilo Andrade De Jesus b,c

a LIBPhys, Department of Physics, University of Coimbra, Coimbra, Portugal
b Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
c Department of Ophthalmology, Erasmus MC, Rotterdam, The Netherlands
d Department of Neurosciences, KU Leuven, Leuven, Belgium
e Department of Ophthalmology, University Hospitals UZ Leuven, Leuven, Belgium
f Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Porto, Portugal
g Department of Ophthalmology, São João Universitary Hospital Center, Porto, Portugal

A R T I C L E I N F O

Keywords:
OCT
Speckle
Glaucoma
Staging

A B S T R A C T

This paper presents a novel image analysis strategy that increases the potential of macular Optical Coherence
Tomography (OCT) by using speckle features as biomarkers in different stages of glaucoma.

A large pool of features (480) were computed for a subset of macular OCT volumes of the Leuven eye
study cohort. The dataset contained 258 subjects that were divided into four groups based on their glaucoma
severity: Healthy (56), Mild (94), Moderate (48), and Severe (60). The OCT speckle features were categorized
as statistical properties, statistical distributions, contrast, spatial gray-level dependence matrices, and frequency
domain features. The averaged thicknesses of ten retinal layers were also collected. Kruskal–Wallis H test and
multivariable regression models were used to infer the most significant features related to glaucoma severity
classification and to the correlation with visual field mean deviation.

Four features were selected as being the most relevant: the ganglion cell layer (GCL) and the inner plexiform
layer (IPL) thicknesses, and two OCT speckle features, the data skewness computed on the retinal nerve fiber
layer (RNFL) and the scale parameter (𝑎) of the generalized gamma distribution fitted to the GCL data. Based
on a significance level of 0.05, the regression models revealed that RNFL skewness exhibited the highest
significance among the features considered for glaucoma severity staging (p-values of 8.6×10−6 for the logistic
model and 2.8 × 10−7 for the linear model). Furthermore, it demonstrated a strong negative correlation with
the visual field mean deviation (𝜌 = −0.64). The post hoc analysis revealed that, when distinguishing healthy
controls from glaucoma subjects, GCL thickness is the most relevant feature (𝑝-value of 8.7×10−5). Conversely,
when comparing the Mild versus Moderate stages of glaucoma, RNFL skewness emerged as the only feature
exhibiting statistical significance (𝑝-value = 0.001).

This work shows that macular OCT speckle contains information that is currently not used in clinical
practice, and not only complements structural measurements (thickness) but also has a potential for glaucoma
staging.
1. Introduction

Glaucoma is the leading cause of irreversible blindness, affecting
over 80 million people worldwide (Tham et al., 2014). Since the
disease is correlated with ageing, these numbers are expected to greatly
increase in coming decades. Glaucoma is a chronic progressive optic
neuropathy characterized by the thinning of the retinal nerve fiber
layer (RNFL) and the cupping of the optic disc, both happening as a
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result of axonal and retinal ganglion cell loss (Weinreb et al., 2014)
and leading to corresponding visual field defects. Glaucoma screen-
ing, diagnosis, and severity classification are based on the clinical
analysis of intraocular pressure (IOP) measurements, visual field (VF),
and structural optic disc assessment (e.g. using optical coherence to-
mography (OCT)) (Jesus et al., 2019). The recent developments in
image enhancement and automatic segmentation in OCT imaging have
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enabled the determination of several biomarkers for clinical applica-
tions. Most of the biomarkers are related to morphological analysis of
either the macula or the optic disc (e.g. RNFL thickness Bowd et al.,
2000, neuroretinal rim area, optic disc area, and Bruch’s membrane
opening Gmeiner et al., 2016; Mohammadzadeh et al., 2020). The
structural changes assessed by these biomarkers are especially impor-
tant for early stages of glaucoma, as they can happen before any
functional damage is visible (Kuang et al., 2015). However, when the
disease has progressed to an advanced stage, most biomarkers reach a
point where further functional decline does not cause any alterations
in the structural exams, and cannot be identified in OCT scans (Bowd
et al., 2017).

Despite the different tools available in clinical practice, there is no
gold standard biomarker for the diagnosis of glaucoma (Kostianeva-
Zhelinska et al., 2018), which often leads to several follow up ap-
pointments before a diagnosis can be achieved and some misclassified
cases (Butt et al., 2016). Henceforth, disease progression is assessed
by OCT and/or optic disc visual inspection (e.g. fundus imaging) as
well as by visual field metrics (such as mean deviation (VF MD)), since
visual field defects increase with disease severity (Wu et al., 2022).
However, VF MD measurements require considerable concentration and
cooperation from the patient, which may lead to low repeatability and
reproducibility for some cases (Patel et al., 2015). Thus, new quanti-
tative and reproducible biomarkers are essential to improve glaucoma
diagnosis, ideally at earlier stages, and assess its progression ideally
until later stages. It is in these more severe cases when visual fields are
usually less reliable and OCT metrics have reached the limit of their
discriminating ability, usually mentioned as ‘‘floor effect’’ (Bowd et al.,
2017).

As a way to provide new insights and improve glaucoma progression
assessment, researchers have introduced new biomarkers that go be-
yond the morphological analysis of OCT images such as speckle-based
features (Gary et al., 2021; Silva et al., 2022). In OCT imaging, the
incident light travels through different optical paths until it reaches the
image plane. Apart from reflection and scattering, the light intensity at
each point of the plane results from interference of all light waves at
that single point creating granular patterns, known as speckles (Kirillin
et al., 2014; Vaz et al., 2017). Since these patterns are influenced
by tissue properties (e.g. local scattering and particle motion), their
analysis results in sub-resolution and structural information (De Pretto
et al., 2015). Features based on OCT speckle are still in early stages
of adoption, in spite of having provided good results in simulation
models or preclinical OCT data (Danielewska et al., 2021; Silva et al.,
2022). Experimental uses of OCT speckle features in-vivo have also been
documented (Jesus and Iskander, 2015; Demidov et al., 2019). For
instance, the statistical modulation of the corneal OCT speckle intensity
was performed in order to understand its relation with IOP (Niemczyk
et al., 2021; Jesus et al., 2017) and to differentiate between glaucoma
suspects, patients, and healthy controls (Iskander et al., 2020). These
studies have shown that OCT speckle statistics can be used not only
for identifying IOP-induced changes in the optical scattering within the
corneal stroma, but also in corneal geometry. Another study (Demidov
et al., 2019) focused on the analysis of spatial speckle statistics to re-
trieve information from low-scattering biological structures, specifically
lymphatic vessels and nerves. However, to the best of our knowledge,
none of the studies presented so far has retrieved speckle-based infor-
mation from the retinal layers and inferred its potential for assisting
the diagnosis and staging.

The goal of this study is to explore whether the analysis of OCT
speckle from retinal layers can be used to assist in glaucoma diagnosis
and severity classification. For that, a broad group of OCT speckle
features (470) from macula-centred volumes of healthy controls and
glaucoma subjects have been retrieved and studied. Moreover, these
features were compared with structural features (retinal layers’ thick-
ness) to determine which features are better to discriminate early
2

disease stages and perform patient staging.
2. Methods

2.1. Dataset

The dataset used in this work is a subset of the Leuven Eye Study
(LES) cohort (Abegão Pinto et al., 2016). The LES is one of the largest
clinical trials on glaucoma, and it includes healthy controls, glaucoma
suspects, and normal tension glaucoma (NTG), primary open angle
glaucoma (POAG), and ocular hypertension (OHT) patients. In this
study, the macular OCT data of 258 subjects and a subset of clinical
metadata (age, sex, IOP, and VF MD) were used.

The glaucoma patients were clustered into three severity groups, ac-
cording to the European Glaucoma Society guidelines (Society, 2021).
Patients with VF MD higher or equal to −6 dB were considered to have
Mild glaucoma, between −6 dB and −12 dB were considered to have
Moderate glaucoma, and those with VF MD lower than −12 dB were
classified as severe cases. Table 1 summarizes the data demographics,
including the mean values for VF MD and IOP. It is important to
notice that IOP is lower than expected in Moderate and Severe cases
due to the topical medication administered to advanced glaucoma
patients (Armstrong et al., 2017).

The OCT device used for the acquisition was the Cirrus 4000 HD
OCT (Carl Zeiss, Dublin, CA), with an axial and lateral resolution
of 5 and 15 μm, respectively. Each OCT volume had 128 B-scans,
with 1024 × 512 pixels each. All pixel intensities were stored in 8-
bits. Prior to the data analysis, an inverse logarithmic transform and
normalization between 0 and 1 (𝑦 = 10𝑥∕255−1) were applied to all OCT
volumes.

Since age and sex are known confounders in glaucoma (Guedes
et al., 2011), the univariate Kruskal–Wallis H test (age) and the Chi-
square test of independence (sex) were used for assessing possible
differences in these variables between severity groups.

2.2. Image segmentation

Ten retinal layers were segmented for each B-scan. The segmenta-
tion was performed with the multi-surface segmentation Iowa Refer-
ence Algorithm (Retinal Image Analysis Lab, Iowa Institute for Biomed-
ical Imaging, Iowa City, IA) (Abràmoff et al., 2010). The segmented
layers, from top to bottom, were: retinal nerve fiber layer (RNFL);
ganglion cell layer (GCL); inner plexiform layer (IPL); inner nuclear
layer (INL); outer plexiform layer (OPL); outer nuclear layer (ONL); in-
ner photoreceptor segment (IS); inner-segment/outer-segment (IS/OS)
junction; outer photoreceptor segment (OS); and retinal pigment ep-
ithelium (RPE). Fig. 1 shows an example of a B-scan and the respective
segmentation.

2.3. Features computation

The speckle-based features (47) and the averaged thickness (1)
were computed for each of the 10 segmented layers. The code used
to determine these values can be found in Repository (2023).

2.3.1. Speckle features
The speckle features were divided in 5 different groups: statistical

properties, statistical distributions, contrast, spatial grey-level depen-
dence matrices (SGLDM), and Fourier domain analysis (Silva et al.,
2022). The computed features are summarized in Table 2 and in the
following subsections.

i. Statistical properties
Statistical properties of OCT pixel intensity have been used to infer

speckle characteristics in previous studies (Roy et al., 2015). These
properties include: mean, standard deviation, kurtosis, and skewness

of the pixels’ intensities.
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Fig. 1. OCT B-scan centred at the macula (left) and the respective segmentation mask using the Iowa Reference Algorithm (Abràmoff et al., 2010) (right). The segmented layers,
from the top to the bottom, are: RNFL (yellow), GCL (red), IPL (green), INL (magenta), OPL (teal), ONL (blue), IS (cyan), IS/OS (purple), OS (orange), and RPE (lime).
Table 1
Demographics, VF MD, and IOP for each group (n = number of subjects; M/F = male/female; OS/OD = left/right eye).

Group n Sex (M/F) Eye (OS/OD) Age (years) VF MD (dB) IOP (mm Hg)

Healthy 56 32/24 27/29 62.9 ± 12.3 – 15.1 ± 3.1
Mild 94 45/49 42/52 67.5 ± 10.3 −1.8 ± 2.3 14.0 ± 4.5
Moderate 48 27/21 19/29 65.4 ± 8.5 −8.5 ± 1.7 12.7 ± 4.1
Severe 60 35/25 32/28 68.8 ± 11.3 −18.1 ± 4.4 12.4 ± 4.4
TOTAL 258 139/120 121/138 66.4 ± 10.9 −6.4 ± 7.6 13.6 ± 4.3
Table 2
Summary of the speckle features that were calculated from each retinal layer.

Group Speckle features N. of features

Statistical properties Mean
Standard deviation
Skewness
Kurtosis

1
1
1
1

Statistical distributions Rayleigh (𝑎)
K (𝜈, 𝜙, 𝐿)
Gamma (𝑎, 𝑑)
Generalized gamma (𝑎, 𝑑, 𝑝)
Weibull (𝑎, 𝑑)
Nakagami (𝑑,𝛺)
Rician (𝑎, 𝜈)
Lognormal (𝜇, 𝜎)

1
3
2
3
2
2
2
2

Contrast Mean
Standard deviation

1
1

SGLDM Energy
Entropy
Correlation
Local homogeneity
Contrast

4
4
4
4
4

Fourier Domain Relative power 4

Total 47

ii. Statistical distributions
Several statistical distributions (probability density functions, PDFs)

have been used to model OCT speckle in previous works (Silva et al.,
2022). The parameters describing these distributions change according
to the tissue properties, specifically the dimension and arrangement of
the scatterers in the sample (Jesus and Iskander, 2017). For each layer,
the OCT pixel intensity values were fitted to eight different PDFs, each
one with a specific set of parameters ranging from one (Rayleigh) to
three (Generalized Gamma and K). A full mathematical description of
these PDFs can be found in Silva et al. (2022) while their equations are
presented in Appendix A.
3

iii. Contrast
The OCT volumetric contrast map was determined using a local

approach similar to the one used for laser speckle contrast imaging
in Vaz et al. (2016). The contrast value was defined as the ratio between
the signal’s standard deviation (𝜎) to its mean (𝜇) (Eq. (A.9)). The
contrast values were determined in windows of 3 × 3 × 3 voxels
over the entire OCT volume using one pixel stride. After the contrast
maps were computed, the mean and standard deviation of the voxels
corresponding to each segmented layer were calculated and used as
features.

iv. Spatial gray-level dependence matrices
Spatial gray-level dependence matrices (SGLDM) have also been

used for texture analysis in OCT speckle images (Kasaragod et al.,
2010). SGLDM measure variations in the brightness of an image, and
are determined by the estimation of the second-order joint-probability
distribution of each combination of grey-level values that occur next to
each other (distance equals one pixel), averaged over directions of 0◦,
45◦, 90◦ and 135◦. Assuming the images are normalized and quantified
with L grey scale values, each f(i, j ∣ d, 𝜃) is the probability of a pixel
with value i being at a distance d from a pixel with gray value of j in
the 𝜃 direction. An 𝐿 × 𝐿 matrix can be created for a chosen direction
𝜃 and distance d.

Several features were extracted from these matrices, namely the
energy (Eq. (A.10)), entropy (Eq. (A.11)), correlation (Eq. (A.12)), local
homogeneity (Eq. (A.13)), and contrast (Eq. (A.14)) (Hilal et al., 2022).

The computation of these 5 features for each SGLDM (4 directions)
resulted in 20 features per retinal layer. Since the calculation of a
SGLDM requires an image as input, instead of a volume, each B-scan
was analyzed individually (Kasaragod et al., 2010). Then, the mean of
each feature was calculated for all the B-scans in a volume.

v. Frequency domain
A frequency domain analysis of each OCT volume was performed

using a 3D discrete Fourier transform (DFT). The Fourier space was
further divided in four concentric regions (low, mid-low, mid-high,
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Fig. 2. Flowchart of the pre-processing steps and bootstrap feature selection method.
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and high frequency). The integral of the spectral amplitude of each
region was divided by the total spectral amplitude of the Fourier space
resulting in 4 features for each tissue layer.

2.3.2. Thickness features
The thickness of each of the 10 layers was calculated by averaging

the thickness of all A-scans in the respective volume. This resulted in
10 measurements (thickness-based features) per subject.

2.4. Outlier correction

In this study, any value that was greater than five standard devi-
ations from the mean value was considered an outlier. These features
were corrected using the Winsorizing method (Ghosh and Vogt, 2012).
In practice, the method corrects low or high outliers by adjusting the
value to the 5th or the 95th data percentile, respectively.

2.5. Statistical analysis

Since the data did not follow a normal distribution, the non-
parametric univariate Kruskal–Wallis H test was used to determine
which of the 480 features presented statistically significant differences
between Healthy, Mild, Moderate and Severe subjects. A Bonferroni
correction was applied due to the large number of variables analyzed.
The features that presented a 𝑝 < 0.05∕480 = 1.04 × 10−4 were
considered as candidates for glaucoma staging.

Hereafter, the variance inflation factor (VIF) (Kim, 2019) was used
to remove variables with large values of multicollinearity using an iter-
ative process. First, a multivariable linear regression model was fitted
4

s

for each variable against the other variables that meet the Kruskall–
Wallis H test criterion. Then, the VIF was determined for each variable
using the equation (Kim, 2019):

VIF𝑖 =
1

1 − 𝑅2
𝑖

(1)

where 𝑅2
𝑖 is the coefficient of determination of the linear regression

when considering feature 𝑖 as the dependent variable. From the set of
variables with VIF ≥ 5, the variable with the highest Kruskal–Wallis 𝑝-
alue was removed from the original set. The process is repeated until
ll the variables presented a VIF<5.

This statistical analysis was applied using a bootstrapping approach
ith 50% of the subjects (137) and 20 000 runs. For each run, a set
f optimal features was found. The final set of features was considered
o be the one that was selected the most. Fig. 2 summarizes the pre-
rocessing steps and the bootstrap feature selection method and the
ext paragraph provide detail on each one of the statistical analysis
teps.

.6. Model fitting

The final set of relevant features and patients’ age were fitted to
wo different types of models (classification and regression) following
wo approaches, dividing the data in four or two classes. For both, all
eatures were standardized (transformed to have zero mean and unitary
tandard deviation). The groups were tested using the stratification
escribed in Table 1 and the approaches are detailed in the following

ubsections.
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Table 3
Set of features that presented a Kruskal–Wallis test H 𝑝-value lower than 1.04 × 10−4 and VIF < 5. The last three columns show the correlation
coefficient of the univariate linear regression between the feature and the respective layer thickness, the VF MD and age. The results for age
are also present for reference.

Layer Feature p-value VIF Corr. with thickness Corr. with VF MD Corr. with Age

RNFL Skewness 1.1e−27 2.6 −0.27 −0.64 0.22
Lognormal 𝜇 4.6e−25 2.6 0.22 0.49 −0.29

GCL Gen. Gamma 𝑎 1.7e−09 1.3 −0.48 −0.34 0.14
Thickness 7.7e−24 2.7 1 0.57 −0.23

IPL Thickness 1.9e−20 2.3 1 0.55 −0.16

Age 1.5e−02 – – −0.16 –
Table 4
Four-class models (ordinal logit regression and multivariable linear regression) with the respective statistically significant features, coefficients
and confidence intervals. Statistically significant features implicate a non-zero model coefficient with a confidence level of 95%.

Model Layer Feature Coeff. Conf. Interval 95% 𝑝-value

Ordinal logistic regression (Glaucoma severity)

RNFL Skewness 1.00 [0.56 1.43] 8.6e−06
GCL Gen. Gamma 𝑎 0.29 [0.01 0.57] 4.7e−02
GCL Thickness −0.80 [−1.22 − 0.38] 1.8e−04
IPL Thickness −0.41 [−0.79 − 0.03] 3.6e−02

Multivariable linear regression (VF MD) RNFL Skewness −3.64 [−4.98 − 2.29] 2.8e−07
IPL Thickness 1.62 [0.40 2.84] 9.8e−03
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i. Four-class models
An ordered logistic regression based on the 4-classes (Healthy, Mild,

Moderate, and Severe) was fitted to the dataset. The order was defined
from 0 (Healthy) to 3 (Severe). The odds’ ratio of each variable can be
obtained by exponentiation of the model coefficients. A variable was
considered to be significant for the model if its coefficient was different
than zero with a 95% confidence interval (Ranganathan et al., 2017).
The model is defined as follows,

𝑙𝑜𝑔
𝑃 (𝑆 ≤ 𝑗)
𝑃 (𝑆 > 𝑗)

= 𝛽𝑗0 + 𝛽1𝑥1 +⋯ + 𝛽𝑝𝑥𝑝 (2)

where 𝑆 stands for severity, 𝛽𝑝 is the model coefficient for the variable
number 𝑝, 𝛽𝑗0 is the interception coefficient, and 𝑗 is the index of the
class ∈ {0, 1, 2, 3}.

In addition, a multivariable linear regression model was used to fit
VF MD (which is the value used to categorize the severity groups) to
the same set of features plus age. The Healthy group was excluded from
this analysis because the VF MD is not regularly measured for healthy
subjects.

ii. Two-class models
A two-class multivariable logistic regression model was fitted to

pairs of groups as a post hoc analysis. Four different models were
considered, comparing Healthy vs. Glaucoma and consecutive stages:
Healthy vs. Mild, Mild vs. Moderate, and Moderate vs. Severe, in
order to check the discriminant power of OCT speckle and anatomical
features for each specific case. Moreover, the area under the receiver
operating characteristic curve (AUC) was computed to show that they
are in agreement with the values reported in literature for the LES
dataset (Abegão Pinto et al., 2016).

3. Results

3.1. Outlier correction

In total, 165 features were identified as having outliers, with a
maximum number of 6 outliers per feature. This corresponds to a
maximum percentage of 2% (6/258) of the total number of elements.

3.2. Statistical analysis

Age and sex were analyzed to check for association with the glau-
coma severity groups. No statistically significant association was found
for sex (𝑝-value = 0.5, 95% confidence interval) but it was for age
5

(𝑝-value = 0.015, 95% confidence interval). Consequently, age was
considered as an independent variable in all models presented in this
study.

From the original 480 set of features (470 speckle + 10 layer
hicknesses), only 5 (3 speckle and 2 thickness features) were con-
idered statistically relevant for the analysis of glaucoma. This set of
eatures was selected 510 times with the bootstrap method. All the
eatures on this set presented a 𝑝-value lower than 1.04 × 10−4 for the
omparison between severity groups and, at the same time, comprise
set where all the features have a VIF < 5. Table 3 summarizes the

esults obtained for the Kruskal–Wallis H test 𝑝-values and presents the
nivariate correlation of each feature with the VF MD, thickness of the
espective layer, and age. The lowest 𝑝-value (1.1 × 10−27) was obtained
or RNFL skewness, followed closely by RNFL Lognormal 𝜇 (4.6 × 10−25)
nd GCL thickness (7.7 × 10−24). RNFL thickness was excluded during
IF assessment and was not included in this set.

.3. Model fitting

.3.1. 4-Class models
A multivariable ordinal logistic regression model was fitted to the

relevant features and patients’ age, to determine which variables
resented higher regression coefficients. Table 4 summarizes the vari-
bles which showed non-zero coefficients, with a significance level of
.05, for each of the 4-class models. Four features presented coefficients
ifferent from zero with a 95% confidence interval, namely RNFL
kewness, GCL Gen. Gamma 𝑎, GCL thickness, and IPL thickness.

The RNFL skewness presented a positive coefficient, meaning that
n increase in one standard deviation on this variable will increase the
dds of being in the next severity states of glaucoma by 𝑒1 = 2.7 times.
or example, when RNFL skewness or RNFL Gen. Gamma 𝑎 increase by

one standard deviation, the odds of being in the categories of Moderate
or Severe increase 2.2 times and 1.3 times respectively, when compared
with the Healthy and Mild categories. For the GCL and IPL thicknesses,
it is the reduction of their value which is associated with an increase
in the odds (2.2 times for GCL and 1.5 times for the IPL) of being in a
more severe state, because the coefficients are negative.

When fitted to a multivariable linear regression model using the
VF MD as the dependent variable, two features presented non-zero
coefficients with a 95% confidence level (Table 4). Both features are
presented in the previous model (RNFL skewness and IPL thickness).
The RNFL skewness is the most significant feature, where an increase
of one standard deviation causes a worsening of 3.6 db of the VF MD.
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Fig. 3. Four class scatter plot, with marginal box plot of: (a) RNFL skewness vs. VF MD; (b) GCL thickness vs. VF MD; (c) IPL thickness vs. VF MD; (d) GCL Gen. Gamma 𝑎 vs.
F MD. Healthy subjects without VF MD measurement are represented with VF MD = 0.
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he IPL thickness shows positive coefficient, which implies that VF MD
orsens (higher glaucoma severity) when this variable decreases.

Fig. 3(a) shows a scatter plot, with marginal box plot, of the distri-
utions of RNFL skewness and VF MD. The data points for the healthy
ases are presented for completeness, although the VF MD parameter
s only relevant for glaucoma severity. The box plots of the VF MD
how, as expected, a perfect separation between the Mild, Moderate
nd Severe classes. Regarding the RNFL skewness, a clear tendency is
hown, confirmed by both the ordinal logistic regression and the linear
egression models, passing from lower values to higher ones when the
everity of the disease increases. The progression of RNFL skewness
s linear, with a gradual increase from Healthy to Mild and then to
oderate/Severe. In the last two stages, the discriminant power of
NFL skewness is reduced.

A lower GCL thickness is visible for Moderate and Severe glaucoma
s shown in Fig. 3(b). In addition, GCL thickness in the healthy group
tands out from the other categories, as it presents significantly higher
hickness (see two-class model Healthy vs. Mild in Section 3.3.2).
6

e

mong all the tested cases and features, the GCL thickness was the
ne that achieved the lowest 𝑝-value (1.7 × 10−4). While in both RNFL
kewness and GCL thickness the discrimination between Moderate and
evere is difficult, the IPL thickness (Fig. 3(c)) seems to maintain some
iscrimination power even in advanced stages (see marginal box plot
f Fig. 3(c)). Nevertheless, the range of values in the mild group is very
xtensive, resulting in a lower overall power.

Regarding GCL Gen. Gamma 𝑎 (Fig. 3(d)), there is an overlapping
etween the Moderate and Severe groups but a visible variation be-
ween the other groups. There is a decreasing tendency when passing
rom Moderate to Mild and Healthy.

.3.2. Two-class models
Four different 2-class models were explored in the analysis: Healthy

s. glaucoma, Healthy vs. Mild, Mild vs. Moderate, and Moderate vs.
evere. For each case, a logistic regression model was fitted to the set
f 5 relevant variables and patients’ age. The significant features for
ach case are detailed in Table 5.
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Table 5
Coefficient values and confidence intervals of statistically significant features for the 2-class fitted models. Statistically significant features
implicate a non-zero model coefficient with a confidence level of 95%. AUC stands for the area under the receiver operating characteristic curve.

Logit Regression Layer Feature Coeff. Conf. Interval 95% 𝑝-value AUC

Healthy vs. Glaucoma
RNFL Skewness 1.32 [0.20 2.44] 2.1e−02

0.92GCL Thickness −1.39 [−2.09 − 0.70] 8.7–05
GCL Gen. Gamma 𝑎 0.73 [0.11 1.36] 2.1e−02

Healthy vs. Mild GCL Thickness −1.34 [−2.49 − 0.51] 2.8e−03 0.85GCL Gen. Gamma 𝑎 0.69 [0.07 1.32] 3.0e−02

Mild vs. Moderate RNFL Skewness 1.98 [0.80 3.15] 1.0e−03 0.88

Moderate vs. Severe – – – – – 0.65
Fig. 4. Two class model, Healthy vs. Mild, scatter plot with marginal box plot of (a) GCL thickness vs. VF MD. (b) GCL Gen. Gamma 𝑎 vs. VF MD. Healthy subjects without VF
MD measurement are represented with VF MD = 0.
s
F
e

v
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The first model explores the differences between the healthy in-
ividuals and glaucoma patients (Mild, Moderate, and Severe). The
ogistic regression model showed that the RNFL skewness, GCL thick-
ess, and GCL Gen. Gamma 𝑎 are the features that had a non zero
oefficient within a 95% confidence interval. All these features were
lready relevant in the 4-class models. GCL thickness is the feature with
he larger, in terms of absolute value, coefficient (−1.39). Finally, the

AUC for this model was computed 0.92.
Regarding the Healthy vs. Mild case, two variables presented a non

zero coefficient within a 95% confidence interval, the GCL thickness
and the GCL Gen. Gamma 𝑎. Using the same strategy as before, we
can find the odds of having mild glaucoma, compared with healthy
subjects, increase 3.8 times when the GCL thickness decreases by one
standard deviation and 2 times when the GCL Gen Gamma 𝑎 increases
by one standard deviation. Fig. 4(a) shows the scatter plot of GCL
thickness and VF MD with marginal box plots. Looking at the scatter
distribution, a clear correlation can be seen where lower values of GCL
thickness are associated with lower VF MD. Even patients diagnosed
with mild glaucoma, but with high VF MD values show a thinner GCL.
The distribution of GCL Gen Gamma 𝑎 is shown in Fig. 4(b). This time
is the increase of the feature that is correlated with the transition from
the Healthy to the Mild group. If we consider this logistic regression
model as a linear classifier, it achieves AUC of 0.85.

Regarding the Mild vs. Moderate, one variable presented non zero
coefficients with a 95% confidence level, the RNFL skewness. RNFL
skewness is the variable with the largest coefficient (1.98). An increase
7

b

in one standard deviation on this variable will increase the odds of
being in the Moderate stage, compared with Mild, by 8 times (𝑒1.98 =
7.2). Fig. 5 presents a scatter plot, with marginal box plots, of the RNFL
kewness and the VF MD. The distribution is similar to the one found in
ig. 3(a) but, this time, the data is grouped in only two classes, which
mphasizes the power of the feature for this specific case.

Lastly, a logistic regression model was also fitted to the Moderate
s. Severe cases. Neither any of the 5 features nor age were able to
chieve a coefficient different from 0 with a 95% confidence level.

. Discussion

The properties of the light scattering in biological tissues have been
tudied as a diagnostic tool for many diseases (Steelman et al., 2019).
he observed patterns allow to infer the density and distribution (spa-
ial arrangement) of the scatterers in a sample, as well as its refractive
roperties. The high sensitivity of OCT allows to image extremely weak
ackscattering features in the retina, such as the vitreo-retinal junction,
r highly scattering structures, such as the retinal pigment epithelium
nd the choroid. Therefore, any changes that may happen at the retinal
ayers as a result of disease, such as glaucoma, may alter the tissue
roperties and hence, result in changes in the light scattering. The
nformation retrieved from changes in the light scattering can be seen
s microstructural biomarkers for the disease diagnosis and staging.

In this work, we used OCT of the macula instead of optic disc OCTs
ecause automatic segmentation of macular OCT is widely available,
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Fig. 5. Two class model, Mild vs. Moderate, scatter plot with marginal box plot of
RNFL Skewness vs. VF MD.

with several alternatives obtaining good results while the segmenta-
tion of optic disc OCTs is still in extensive development (Marques
et al., 2022). Moreover, the effects of glaucomatous damage in the
macular region have already been highlighted in several studies, prov-
ing that they are also discriminant for the glaucoma diagnosis and
staging (Nakatani et al., 2011; Medeiros et al., 2005).

4.1. Statistical analysis

A detailed and comprehensive analysis of a large range of macula-
centered OCT speckle features was performed in this study. From the
initial set of 470 speckle features (microstruture biomarkers) and 10
anatomical features (macrostructure biomarkers), only 5 features were
considered statistically relevant for glaucoma analysis. From these, 4
features (RNFL Skewness, GCL Gen. Gamma 𝑎, and thicknesses of GCL
and IPL) were considered statistically significant for severity differen-
tiation.

Three features obtained a correlation value with VF MD higher than
0.5, namely the RNFL skewness, GCL thickness, and IPL thickness. The
correlation between speckle features and the corresponding thicknesses
was also computed as a way to infer both sources of information contain
distinct information.

Age, overall, showed a weak negative correlation coefficient with
VF MD (𝜌 = −0.16). Nonetheless, this was a significant correlation,
which led us to included it as an independent variable in all the models.

4.2. Model fitting

From the subset of 5 features plus age, we identified four that
showed statistical significance in logistic and linear regression models.
These features can be regarded as possible biomarkers for glaucoma
staging. Age was used as a possible biomarker but no significance was
found in any of the tested models.

RNFL skewness presented the highest discriminant power over all
the tested features. It was the feature with the lowest 𝑝-value on the
Kruskal–Wallis H test, the one with the highest correlation with VF
MD, and it was relevant in the two 4-class models and in two 2-class
models. From a physical point of view, skewness is associated with
8

the pixels’ intensity distribution along the respective layer. A positive
skewness indicates a prevalence of lower intensities (darker pixels)
while a negative skewness is evidence of higher intensities (brighter
pixels). Brighter pixels on an OCT image are indicative of tissue areas
with higher backscattered light, while darker pixels correspond to zones
with lower backscattered light (Spicer et al., 2019). From a physiolog-
ical point of view, lower backscattered signal may be associated to a
decrease on the ganglion cell axons as the glaucoma progresses.

The Gen. Gamma 𝑎 parameter was relevant in the ordinal logis-
tic regression, showing higher values for severe stages of glaucoma
than for the early ones. However, its physical interpretation is not
straightforward. The Gen. Gamma distribution is a three parameter
distribution with applicability in the speckle modeling of tissue with
lower scatterer concentrations. The 𝑎 parameter is the scale parameter
of the distribution which controls the maximum values, or the level, of
the variable. Thus, a statistically significant variation of this parameter
may indicate changes in the light scattered, higher light scattered by
the more severe groups of glaucoma, at the region of the GCL.

Speckle-based features present, in general, different information
from the thickness features, as shown by their coefficients of correlation
with the respective layer thickness (Table 3), which were lower than
0.3 except for GCL Gen. Gamma 𝑎. The potential of speckle features
proved to be significant, specially for distinguishing Mild vs. Moderate
glaucoma where only a speckle feature was statistically significant. This
observation indicates that microstructural biomarkers extracted from
OCT images are, in fact, related with changes in the microstructure of
the tissue and not simply correlated with the macrostructure.

The retinal layers thinning is a known effect of glaucoma (Miki
et al., 2014). In our study, the GCL and IPL thicknesses were the ones
that showed the best discriminant power for the diagnosis and staging
of glaucoma patients. In fact, GCL thinning is known to be an early
indicator of glaucoma (Ustaoglu et al., 2019). In our study, it had the
highest significance in the Healthy vs. Glaucoma and Healthy vs. Mild
regression models. The IPL thickness was relevant in the multivariable
linear regression, but with higher 𝑝-value than GCL thickness. The RNFL
thickness did not appear as a relevant feature in any of the models
because it was excluded during the VIF evaluation. Although the RNFL
thickness (at the macula) has been reported as a good biomarker for
glaucoma diagnosis, it does not have an added value when compared
to the parameters presented in the results, e.g. the GCL thickness.

The phenomenon called ‘‘floor effect’’ is clearly observable in the
results of the Moderate vs. Severe discrimination problem. None of
the features, neither thicknesses nor speckle, were significant in this
two-class model. Furthermore, this model yielded also the lowest AUC
(0.65). The ‘‘floor effect’’ explains how the ability, of OCT imaging
technique, to discern further thinning of retinal layers stops before the
disease has reached the severe state. Nevertheless, it is interesting to
notice that the speckle-based features used in this work were retrieved
from a single OCT image and, in the case of RNFL skewness, it is in-
formative enough to observe a significant statistical difference between
Mild and Moderate glaucoma subjects.

Neither speckle nor thickness features were significant for the Mod-
erate vs. Severe case. It is possible that other type of damage can
still occur in deeper layers, but this information is not collected with
current OCTs due to the low signal-to-noise ratio. In order to assess
changes in advanced disease stages, other studies (De Jesus et al.,
2020) have reported that microvascular density retrieved from OCT
angiography (OCTA) is able to discriminate moderate from severe
glaucoma, overcoming this limitation of the OCT. This occurs because
OCTA is an imaging modality based on temporal speckle variations
observed in a sequence of OCT B-scans acquired at the same location.

Traditional OCT imaging was tailored during the last decades to
produce the best possible anatomical images, with well defined bound-
aries and structures. The pre-processing methods applied by device
manufacturers change the values of the images within tissue layers to

increase the image contrast. The in-built software inevitably changes
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the features’ statistics, which has major implications on the microstruc-
ture biomarkers. Also, OCT volumes are produced averaging several
scans with the main purpose to reduce speckle effect. Due to these
reasons, the acquisition of un-processed data from OCT devices could
still improve the outcome of speckle based biomarkers.

In addition, the OCT image forming process is dependent on the
backscattered light, making it very difficult to determine the absorption
and scattering coefficients of the studied tissue. Novel ways of assess-
ment of microstructural biomarkers could improve the determination of
this type of biomarkers which are correlated with the light properties
of the tissue. The general use of other imaging techniques, like spectro-
scopic optical coherence tomography (Nam and Yoo, 2018), will enable
the determination of the tissue wavelength-dependent absorption and
scattering coefficients and may lead to more precise determination
of these microstructural biomarkers and improve the diagnosis and
staging.

Both types of biomarkers, microstructure and macrostructure, have
limitations in terms of clinical significance. As discussed before, thick-
ness measurements rapidly suffer from the ‘‘floor effect’’. Moreover, the
algorithms used for the thickness determination depend on the device,
causing variability in the measurements (Zahavi et al., 2021). Also, the
signal-to-noise ratio will certainly decrease with the imaging depth. As
a consequence, OCT-based features will be less sensitive to changes that
may happen in deeper layers than in upper layers.

This paper focuses on novel imaging features, analyzing their poten-
tial in comparison with current state-of-art imaging features, studying
their discriminating power and their interpretability. Therefore, the
development of an optimal classification model combining all the avail-
able information was out of the scope of this paper. Nevertheless, future
work on optimization of machine learning models can lead to better
results than those presented in this work. Therefore, the data set of 480
features from 258 subjects, as well as code to compute those features
in OCT images, was made available as a supplementary material for
further investigation (Silva et al., 2023).

As a consequence of the points discussed in this section, some
pressing future work directions must be proposed. First, the use of raw,
unprocessed, OCT data could improve the sensitivity of microstruc-
ture biomakers, specially in advanced stages of glaucoma. Then, the
same set of features could be explored in optic disk OCT images.
The influence of device variability should also be studied in both
speckle and anatomical features. The increment of the data set size
could further sustain the conclusions drawn from this work. The use of
longitudinal data must also be considered to check the features’ ability
to detect disease progression in the same subjects. Finally, in view
of the recent development of the technique detection-of-apoptosing-
retinal-cells (DARC) (Cordeiro et al., 2021), which is able to visualize
apoptotic retinal ganglion cells, it would be interesting to correlate
speckle features with DARC metrics.

In this work, the layers were analyzed as a single structure. Nev-
ertheless, glaucoma is known to have different effects in different
spatial locations (De Jesus et al., 2020). The results could have been
understated by considering the layers as a single structure. Then, a
sectorial and combined analysis of the OCT volumes of the macular
and papilar regions must be performed in future works in order to
study the biomarkers in a more precise way. Finally, glaucoma also
induces changes in the tissue dynamics, like the retinal blood flow. The
exploration of microstructure biomarkers in OCTA data has potential
to produce information not captured by standard OCT and surpass the
‘‘floor effect’’ visible in standard OCT features.

5. Conclusion

This work performs, for the first time, a comprehensive and ex-
tensive assessment of possible macular OCT speckle biomarkers for
the diagnosis and staging of glaucoma. According to our conservative
9

analysis, GCL thickness was confirmed as a good biomarker for glau-
coma diagnosis and RNFL skewness is proposed as a good candidate to
support the analysis of glaucoma staging. The potential of the analysis
of macular OCT speckle features in the context of glaucoma has thus
been established.
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Appendix A. Mathematical equations

The main mathematical equations used in this work are depicted in
this section.

Rayleigh PDF.

𝑝𝑅𝐿(𝐴; 𝑎) =
𝐴
𝑎2

𝑒

(

− 𝐴2

2𝑎2

)

, (A.1)

where 𝑎 is the scale parameter.

Gamma PDF.

𝑝𝐺(𝐴; 𝑎, 𝑑) =
𝐴𝑑−1𝑒−𝐴∕𝑎

𝑎𝑑𝛤 (𝑑)
for 𝑎, 𝑑 > 0 , (A.2)

where 𝑑 is the shape parameter, 𝑎 is the scale parameter, and 𝛤
represents the Gamma function (Artin, 2015).

Generalized gamma PDF.

𝑝𝐺𝐺(𝐴; 𝑎, 𝑑, 𝑝) =
𝑝𝐴𝑑−1

𝑎𝑑𝛤 (𝑑∕𝑝)
𝑒−(𝐴∕𝑎)

𝑝 for 𝑝 > 0 , (A.3)

where 𝑑 and 𝑝 are shape parameters, and 𝑎, the scale parameter.

https://www.uc.pt/lca
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K PDF.

𝑝𝐾 (𝐴; 𝜐, 𝜑, 𝐿) =
2𝜉(𝛽+1)∕2𝐴(𝛽−1)∕2

𝛤 (𝐿)𝛤 (𝜑)
𝐾𝜑−𝐿(2

√

𝜉𝐴) , (A.4)

where 𝛽 = 𝐿+𝜑− 1, 𝜉 = 𝐿𝜑∕𝜈, 𝐾𝛼 is a modified Bessel function of the
second kind of order 𝛼.

Weibull PDF.

𝑝𝑊 (𝐴; 𝑎, 𝑑) = 𝑑𝐴𝑑−1

𝑎𝑑
𝑒−(𝐴∕𝑎)

𝑑
, (A.5)

where 𝑑 is shape parameters, and 𝑎, the scale parameter.

Nakagami PDF.

𝑝𝑁𝐾 (𝐴′; 𝑑,𝛺) = 2𝑑𝑑

𝛤 (𝑑)𝛺𝑑 𝐴
′2𝑑−1𝑒−

𝑑
𝛺 𝐴′2

, (A.6)

where 𝑑 is a shape parameter and 𝛺 is a spread parameter.

Rician PDF.

𝑝𝑅𝐼 (𝐴; 𝑎, 𝜈) =
𝐴
𝑎2

𝑒−
𝐴2+𝜈2

2𝑎2 𝐼0

(

𝐴𝜈
𝑎2

)

, (A.7)

where 𝜈 is the noncentrality parameter and 𝐼0 is the zero order modified
Bessel function of the first kind (Abramowitz and Stegun, 1964).

Lognormal PDF.

𝑝𝐿(𝐴;𝜇, 𝜎) =
1

𝜎𝐴
√

2𝜋
𝑒−

(𝑙𝑜𝑔𝐴−𝜇)2

2𝜎2 , (A.8)

where 𝜇 is the mean and 𝜎 the standard deviation.

Contrast.

𝐶 = 𝜎
𝜇

, (A.9)

where 𝜇 is the mean and 𝜎 the standard deviation.

SGLDM features.

𝐸𝑛𝑒𝑟𝑔𝑦 =
𝐿−1
∑

𝑖=0

𝐿−1
∑

𝑗=0

√

[𝑠𝜃,𝑑 (𝑖, 𝑗)]2 (A.10)

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =
𝐿−1
∑

𝑖=0

𝐿−1
∑

𝑗=0
−𝑠𝜃,𝑑 (𝑖, 𝑗) 𝑙𝑜𝑔

[

𝑠𝜃,𝑑 (𝑖, 𝑗)
]

(A.11)

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =

∑𝐿−1
𝑖=0

∑𝐿−1
𝑗=0 (𝑖 − 𝜇𝑥)(𝑗 − 𝜇𝑦)𝑠𝜃,𝑑 (𝑖, 𝑗)

𝜎𝑥𝜎𝑦
(A.12)

𝐿𝑜𝑐𝑎𝑙 ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =
𝐿−1
∑

𝑖=0

𝐿−1
∑

𝑗=0

1
1 + (𝑖 − 𝑗)2

𝑠𝜃,𝑑 (𝑖, 𝑗) (A.13)

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =
𝐿−1
∑

𝑖=0

𝐿−1
∑

𝑗=0
(𝑖 − 𝑗)2𝑠𝜃,𝑑 (𝑖, 𝑗) (A.14)

where 𝑠𝜃,𝑑 (𝑖, 𝑗) is the (𝑖, 𝑗) element of the SGLDM for distance 𝑑 and
direction 𝜃, and,

𝜇𝑥 =
𝐿−1
∑

𝑖=0
𝑖

𝐿−1
∑

𝑗=0
𝑠𝜃,𝑑 (𝑖, 𝑗) (A.15)

𝜇𝑦 =
𝐿−1
∑

𝑖=0
𝑗

𝐿−1
∑

𝑗=0
𝑠𝜃,𝑑 (𝑖, 𝑗) (A.16)

𝜎𝑥 =
𝐿−1
∑

𝑖=0
(𝑖 − 𝜇𝑥)2

𝐿−1
∑

𝑗=0
𝑠𝜃,𝑑 (𝑖, 𝑗) (A.17)

𝜎𝑦 =
𝐿−1
∑

(𝑗 − 𝜇𝑦)2
𝐿−1
∑

𝑠𝜃,𝑑 (𝑖, 𝑗) (A.18)
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