3,024 research outputs found

    Linear evolution of sandwave packets

    Get PDF
    We investigate how a local topographic disturbance of a flat seabed may become morphodynamically active, according to the linear instability mechanism which gives rise to sandwave formation. The seabed evolution follows from a Fourier integral, which can generally not be evaluated in closed form. As numerical integration is rather cumbersome and not transparent, we propose an analytical way to approximate the solution. This method, using properties of the fastest growing mode only, turns out to be quick, insightful, and to perform well. It shows how a local disturbance develops gradually into a sandwave packet, the area of which increases roughly linearly with time. The elevation at the packet¿s center ultimately tends to increase, but this may be preceded by an initial stage of decrease, depending on the spatial extent of the initial disturbance. In the case of tidal asymmetry, the individual sandwaves in the packet migrate at the migration speed of the fastest growing mode, whereas the envelope moves at the group speed. Finally, we apply the theory to trenches and pits and show where results differ from an earlier study in which sandwave dynamics have been ignored

    Morbidity and psychological impact of prostate biopsy: the future calls for a change

    Get PDF
    Currently transrectal ultrasound-guided prostate biopsy (TRUS-Bx) is one of the most common urological procedures, with more than 1 million performed per year in Europe and the United States. [1] Among patients undergoing TRUS-Bx, approximately one-third will receive a diagnosis of prostate cancer (PCa), while two-thirds receive a negative result on initial biopsy. Negative biopsy patients maintain an estimated risk of repeated biopsy of 12% at 1 year and 38% at 5 years. [2] Standard TRUS-Bx is likely to systematically miss significant tumors, particularly in the anterior and apical parts of the gland. [3] A crucial aim of urologists in the next decade is to increase the accuracy of the procedure and avoid the use of inappropriate biopsies

    Heavy metal accumulation in vegetables grown in urban gardens.

    Get PDF
    Urban agriculture is increasingly popular for social and economical benefits. However, edible crops grown in cities can be contaminated by airborne pollutants, thuse leading to serious heatlh risks. Therefore we need a better understanding of contamination risks of urban cultivation to define safe practices. Here we study heavy metal risk in horticultural crops grown in urban gardens of Bologna, Italy. We investigated the effect of proximity to different pollution sources such as roads and railways, and the effect of the growing system used, that is soil versus soilless cultivation. We compared heavy metals concentration in urban and rural crops. We focussed on surface deposition and tissue accumulation of pollutants during three years. Results show that in the city crops near the road were polluted by heavy metals, with up to 160 mg per Kg dry weight for lettuce and 210 mg/Kg for basil. The highest Cd accumulation of up to 1.2 mg/Kg was found in rural tomato. Soilless planting systems enabled a reduction of heavy metal accumulation in plant tissue, of up to -71% for rosemary leaves

    Effects of Douglas fir stand age on soil chemical properties, nutrient dynamics, and enzyme activity: A case study in Northern Apennines, Italy

    Get PDF
    The aim of this study was to determine the effect of a Douglas fir plantation along a stand chronosequence in the North Apennine (Italy) on soil carbon and nitrogen stocks, as well as on soil chemical and biochemical properties involved in the nutrients biogeochemical cycle. In 2014, three sites of Douglas fir stands, aged 80, 100, and 120 years, were selected in Vallombrosa forest to study the dynamics of soil nutrients in the ecosystem. Along the Douglas fir chronosequence, general evidence of surface element accumulation was found, including a conspicuous increase of alkaline element with respect to Al, which was attributed to the increase of soil pH along the Douglas fir stand age classes. A general increase of specific enzyme activity (per unit of organic carbon) and functional diversity were observed in the epipedon of the Douglas fir stand over 100 years of age. Moreover, the (chitinase + leucine aminopeptidase) to acid phosphatase ratio progressively increased from 0.15 to 0.31 in the epipedon of the chrononsequence, while the -glucosidase to (chitinase + leucine aminopeptidase) ratio decreased from 1.45 to 0.83, suggesting nitrogen limitation with respect to carbon. In fact, the soil carbon stock progressively increased along the chronosequence, in the epipedon from 17 to 53 Mg C ha(-1) and in the endopedon from 17 to 37 Mg C ha(-1). Conversely, the soil nitrogen stock increased from 1.2 to 2.4 Mg N ha(-1), but not over the 100-year-old stand class. In conclusion, soil organic matter accumulation became sufficient to define the umbric horizon in the Northern Apennines when the Douglas fir plantation reached the age of 100 years. Over this age class of plants, a limitation of soil nitrogen may occur, affecting enzyme activities regulating the biogeochemical cycle of nutrients

    A particle model of rolling grain ripples under waves

    Get PDF
    A simple model is presented for the formation of rolling grain ripples on a flat sand bed by the oscillatory flow generated by a surface wave. An equation of motion is derived for the individual ripples, seen as "particles", on the otherwise flat bed. The model account for the initial apperance of the ripples, the subsequent coarsening of the ripples and the final equilibrium state. The model is related to physical parameters of the problem, and an analytical approximation for the equilibrium spacing of the ripples is developed. It is found that the spacing between the ripples scale with the square-root of the non-dimensional shear stress (the Shields parameter) on a flat bed. The results of the model are compared with measurements, and reasonable agreement between the model and the measurements is demonstrated.Comment: 9 pages incl. figures. Revised versio

    In situ remediation of polluted Spolic Technosols using Ca(OH)2 and smectitic marlstone

    Get PDF
    Technosols are soils developed on non-traditional substrates and containing large quantities of materials mostly due to intensive human industrial activity, such as artefacts. The increasing number of sites affected by Technosols and their impact on the environment as growing media for plants or as source of pollutants require an understanding of their functioning and evolution, above all the knowledge on the transport of toxic substances from contaminated technogenic soils to groundwater. A case study on properties, remediation and evaluation of Technosols made up by vitrified fly ash and glass\u2013ceramics in Italy was carried out. Original technogenic soils, classified as Spolic Technosols (ecotoxic),were pedotechnically in situ remediated by adding smectitic marlstone and Ca(OH)2. Chemical analysis on samples from piezometers showed the presence of harmful heavy metals in groundwater. By means of boreholes and soil profiles the newsoils generated, after remediation, were physically and chemically characterized and classified as Spolic Technosols (calcaric). Analysis on soil toxicity and leaching tests showed the effectiveness of the remediation and the mobility reduction of some potentially harmful elements according to the environmental Italian regulation

    Spatial microbial community structure and biodiversity analysis in "extreme" hypersaline soils of a semiarid Mediterranean area

    Get PDF
    In recent years specific attention has been paid on the biotechnological potential of microorganisms in extreme soils, in particular in saline soils. Salinity is one of the most widespread soil degradation processes on the Earth, and saline soils can be defined as extreme soils or border line habitats in which several factors, as high salt content, may limit the growth of organisms. In this study, the physical, chemical and microbiological soil properties were investigated in the shallower horizon of natural salt-affected soils in Sicily (Italy). The main aim of the research was to evaluate the structure and diversity of bacterial and archaeal communities by terminal-restriction fragment length polymorphism (T-RFLP) according to arbitrary different classes of vegetation and salt crust cover in soils. Furthermore, the structure of microbial communities was assessed considering the heterogeneity of physical-chemical properties of the habitat under investigation, as a function of vegetation, crust cover, and salinity classes. The results provided information on the type of distribution of different microbial community composition and diversity as a function of both vegetation and crust cover as well as salinity classes. In particular, the archaeal community showed a richness and diversity significantly affected by the spatial gradients of soil salinity, conversely, the bacterial one showed a decreasing trend with increasing gradient of soil salinity. The T-RFLP cluster analysis showed the formation of two groups for both bacterial and archaeal community, significantly (. p<. 0.05) influenced by sand and silt content, electrical conductivity (EC. e), vegetation cover percentage, salt crust and for by texture composition. In particular, the discriminant analysis obtained for the different salt crust classes for archaeal community stressed the membership of one of the two clusters to the class with the lower salt crust percentage (0-40%)
    • …
    corecore