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A simple model for the formation ofrolling grain rippleson a flat sand bed by the oscillatory flow
generated by a surface wave is presented. An equation of motion is derived for the individual
ripples, seen as ‘‘particles,’’ on the otherwise flat bed. The model accounts for the initial appearance
of the ripples, the subsequent coarsening of the ripples, and the final equilibrium state. The model
is related to the physical parameters of the problem, and an analytical approximation for the
equilibrium spacing of the ripples is developed. It is found that the spacing between the ripples
scales with the square-root of the nondimensional shear stress~the Shields parameter! on a flat bed.
The results of the model are compared with measurements, and reasonable agreement between the
model and the measurements is demonstrated. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1332390#

I. INTRODUCTION

In the coastal zone where the water is relatively shallow,
a ubiquitous phenomenon is the formation of ripples in the
sand. These ripples have been described in the seminal work
of Bagnold,1 who called themvortex ripples. The vortex
ripples have been studied recently from a pattern-forming
point of view.2–4 Bagnold also described another kind of
ripple that was created from an initially flat bed, as a tran-
sient phenomenon before the creation of vortex ripples.
These ripples were created by the rolling back and forth of
individual grains on the flat bed, and were calledrolling
grain ripples. It is this latter class of ripples which is the
topic of this article.

The most well-known type of ripple created by oscilla-
tory motion is the vortex ripple, so called because of the
strong vortices created by the sharp crest of the ripples.
These are the ripples one encounters when swimming along
a sandy beach. The shape of the ripples is approximately
triangular, with sides being at the angle of repose of the sand.
The length of the ripples scales with the amplitude of the
oscillatory motion of the water near the bed,a. The dynam-
ics of the vortex ripples and the creation of a stable equilib-
rium pattern have been recently described.4

In contrast to the vortex ripples, the rolling grain ripples
have not~to the author’s knowledge! been observed in the
field, and have only been studied in controlled laboratory
experiments, where it is possible to have a completely flat
bed as initial condition. In this article, the term ‘‘rolling
grain ripple’’ refers to the ridges with triangular cross section
occurring on an otherwise flat bed~Fig. 1 and Fig. 2! which
is in agreement with Bagnold’s definition of the rolling grain

ripples ~see also plate 3 in Ref. 1!. The length of the trian-
gular cross section is small~typically smaller than 1 cm!, and
much smaller than the spacing between the ridges, which
again is typically smaller than the spacing between the vor-
tex ripples. As the crest of the rolling grain ripples is rather
sharp, a separation zone can be induced in the lee side of the
ripple ~a separation zone is an area where the flow is in the
opposite direction of the main flow!. This has also been
found from numerical simulations of the flow over triangular
ridges.5

Bagnold assumed that there were no separation zones
behind the rolling grain ripples, and this has led to the adop-
tion of the term rolling grain ripples for ripples without sepa-
ration. It seems as if another type of ripple can emerge from
a flat bed. These ripples initially have a sinusoidal shape, and
thus no flat bed between them. The ripples grow and become
sharper until they are steep enough to induce separation,
whereafter they grow to become vortex ripples. From the
author’s own experiments5 and from Ref. 6, the formation of
the ripples seems to depend on the initial preparation of the
bed. If the grains are small and the bed well packed, the
rolling grain ripples as described by Bagnold appear
~‘‘Bagnold-type rolling grain ripples’’!. If, however, the
grains are large or the flat bed is carefully prepared, so as not
to be packed, i.e., by letting the grains settle through the
water, a mode with sinusoidal ripples can be observed.6

These ‘‘sinusoidal rolling grain ripples’’ have been described
by a hydrodynamic instability of the wave boundary layer.
The idea was originally formulated by Sleath,7 but was de-
veloped in great detail in a series of papers by Blondeaux,
Foti, and Vittori.8–12 This kind of ripple is not described by
the model which will be developed here.

The model to be presented is a ‘‘particle model’’ in the
sense that it sees each ripple as a ‘‘particle’’ that interactsa!Electronic mail: ken@isva.dtu.dk
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with its neighboring particles. A heuristic equation of motion
is written for each particle, taking into account the move-
ment of the particle and the presence of the neighboring par-
ticles. When two particles collide, they merge and form a
new, larger particle. This continues until a steady state is
achieved.

After a more detailed description of the rolling grain
ripples in Sec. II, the heuristic model is developed in Sec. III.
It turns out, fortunately, that the parameters entering this
model can be connected to measurable quantities~Sec.
III A !. In Sec. III B the model is solved numerically and ana-
lytically, and comparison with experimental measurements
of rolling grain ripples is made in Sec. III C. The results are
discussed in Sec. IV and conclusions can be found in Sec. V.

II. THE ROLLING GRAIN RIPPLES

An example of a flat bed with rolling grain ripples co-
existing with vortex ripples is seen in Fig. 1. In the middle of
the picture the ripples have not yet formed and the bed is still
flat, while on the top vortex ripples are seen to invade the flat
bed. The vortex ripples are typically nucleated from the
boundaries or from a perturbation in the bed. In the lower
part of the picture the rolling grain ripples have formed on
the flat bed, and are seen as the small bands of loose grains
on top of the flat bed.

The flow over the bed created by the surface wave is
oscillating back and forth in a harmonic fashion. This flow
creates a shear stress on the bed,t(t), which in nondimen-
sional form reads

u~ t !5
t~ t !

r~s21!gd
, ~1!

wherer is the density of water,s is the relative density of the
sand~for quartz sand in waters52.65), g is the gravity, and
d is the mean diameter of the grains.u is usually called the
Shields parameter.13 When the shear stress exceeds a critical
valueuc , the grains start to move. For a turbulent boundary
layer the value of the critical Shields parameter isuc

'0.06.14 The grains which have become loosened from the
bed start to move back and forth on the flat bed, and after a
while the grains come to rest in parallel bands. In the lee side
of each band the bed is shielded from the full force of the
flow, creating a ‘‘shadow zone’’ where the grains move more
slowly than in the upstream side of the bands.

Due to this shadow zone, more grains end up in the
bands than leave the bands, and they grow until they form
small ridges, the rolling grain ripples. When the rolling grain
ripples are fully developed, no grains will be pulled loose
from the bed in the space between them, and they are stable.
However, in reality the rolling grain ripples are dominated
by invading vortex ripples,2 which is the reason why they
have not been observed in nature.

III. A SIMPLE MODEL

The above scenario can be formulated mathematically
by writing an equation of motion for each grain/particle. In
the following an equation of motion for the particles is de-
veloped. In the beginning the particles represent the grains,
but as the single grains quickly merge, the particles most of
the time represent the ripples. First, the velocity of each par-
ticle is found, assuming that the particle is alone on the flat
bed, and then the influence of the shadow zones from neigh-
boring particles is taken into account.

ConsiderN particles rolling on top of a rough, solid
surface. Each particle is characterized by its positionxi and
its heighthi ~see Fig. 2!. As the ripples are triangular, the
area of each particleAi and their heights are related as

hi5AAi tanf, ~2!

wheref is the angle of repose of the sand~approximately
33°14!.

FIG. 1. An example of a rippled bed viewed from above, with rolling grain
ripples~bottom! and vortex ripples invading from the top. The experimental
setup is a wave tank 60 cm wide and approximately 50 cm deep, containing
sand with a median diameter of 0.2 mm.

FIG. 2. A sketch of a ripple on the flat bed with related quantities.xi is the
position of the ripplei, Ai is the area,h is the height, andf is the angle of
repose of the sand.

FIG. 3. Geometrical illustration of the quantities involved in the derivation
of the ‘‘1/height’’ law. qcrest is the flux of sand over the crest.dxhi is the
amount of sand needed to move the ripple forward a distancedx.
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The ripple moves back and forth more slowly than a
single grain, according to the ‘‘1/height’’ law. This law is
well known in the study of dunes in the desert15 or subaque-
ous dunes,16 and can be illustrated by a simple geometrical
argument. Suppose that there is a flux of sand over the crest
of a ripple or a duneqcrest~Fig. 3!. To make the ripple move
a distancedx, an amount of sandhdx is needed. As the
sediment flux is the amount of sand per unit time, the veloc-
ity of the ripple isuripple5qcrest/h}1/h. If the height of the
initial particles~the single grains! is assumed to be equal to
the grain diameterd, the velocity of the particles can be
related to that of the single grains as

ui5
d

hi
Ug sin~vt !, ~3!

whereUg is the velocity amplitude of the motion of a single
grain andv is the angular frequency of the oscillatory mo-
tion.

In the wake of each particle/ripple there is a shadow
zone~Fig. 4!, which is the area behind the particle where the
absolute value of the shear stress is smaller than it would be
on a flat bed. The length of the shadow zone is therefore
larger than the length of the separation bubble formed by the
particle~note that the shadow zone would be present even in
the absence of separation!. If the shadow zone is much
smaller than the amplitude of water motion, the flow in the
lee side of the ripple can be assumed to have sufficient time
to become fully developed. The fully developed flow over a
triangle is similar to that past a backward facing step in
steady flow, which has been extensively studied~see, e.g.,
Tjerry17!. In that case the relevant quantities, i.e., the length
of the separation bubble, the length of the wake, etc., scale
with the height of the step. As a first assumption, the shadow
zone is therefore assumed to have a length which is propor-
tional to the height of the particle:ashi . If a particle enters
the shadow zone of another particle, it is slowed down ac-
cording to the distance between the particles. This means
that the actual velocity of a particle isui f (Dx), whereDx is
the distance between the grain and the nearest neighbor up-

stream,ui is the velocity of the particle outside the shadow
zone, andf is a function determining the nature of the slow-
ing down of the particle motion. A simple linear function is
used, as shown in Fig. 4. The exact form of the functionf is
not crucial, as will become evident later; the important pa-
rameter is the extent of the shadow zone as determined by
as .

It is now possible to write the equations of motion for
the particles as a system of coupled ordinary differential
equations~ODEs!

~4!

for i 51, . . . ,N, whereug(t)5Ug sin(vt). The motion of a
particle is thus made up of three parts:~i! the motion of the
single undisturbed particle;~ii ! the effect of the shadow from
the particle to the left (i 21), which might affect particlei in
the first half period, and~iii ! the effect of the shadow of the
particle to the right (i 11) in the second half period.

When lengths are scaled by the diameter of the grains
and time by the frequencyv, it is possible to identify the
three relevant dimensionless parameters of the model:

~i! as , the length of the shadow zone divided by the
height;

~ii ! ag /d, the amplitude of the motion of a single grain,
divided by the grain diameter (ag5vUg); and

~iii ! l i /d, the initial distance between the grains;l i

5L/N, whereL is the length of the domain andN is
the initial number of grains.

A. Relation to physical quantities

Even though the model seems quite heuristic, the param-
eters entering the model,ag /d, l i /d, andas , can be related
to physical parameters describing the flow and the properties
of the grains. The line of arguments presented here closely
follows those used to derive the flux of sand on a flat bed
~the bed load!, as can be found in Ref. 14, or in Ref. 18.
First, the velocity of a single grain will be derived, from
which ag /d can be inferred. Thereafter, the initial number of
grains in motion is found, from which followsl i /d. Finally,
the length of the shadow zoneas is discussed.

1. The velocity of the grains

The velocity of the grain can be found by considering
the force balance on a single grain lying on the flat bed. The
grain is subject to a drag force proportional to the square of
the relative flow velocityur5unb2ug , whereunb is the ve-
locity near the bed andug is the velocity of the grain

Fd5 1
2CDrAuur uur , ~5!

whereA is the area of the grain andCD is a drag coefficient.
The numerical sign is used to obtain the right sign of the
force. The velocity profile in the vicinity of the bed is sup-
posed to be logarithmic. As shown in Ref. 19, this is a rea-
sonable assumption except when the flow reverses. However,

FIG. 4. An illustration of the shadow zone of one ripple, in the part of the
wave period where the flow is from the left to the right. Below is seen the
function f (Dx) used to describe how a particle is slowed down when it
enters the shadow zone of another particle.ash is the total length of the
shadow zone.
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during reversal the velocities are small anyway and the ac-
curacy is of minor importance. The logarithmic profile over a
rough bed can be written as~e.g., Ref. 14!

u~y!5
uf

k
lnS 30y

kN
D , ~6!

wherek50.41 is the von Ka´rmán constant,uf[At/r is the
friction velocity, andkN is the Nikuradse roughness length. It
is then possible to find the near bed velocity as the velocity
at y'1/2d

unb5juf , ~7!

where the constantj can be determined from Eq.~6! by
assumingkN5d. Opposing the drag on the grain is the fric-
tion of the bed

F f52mW, ~8!

wherem is a friction coefficient andW5rg(s21)d3p/6 is
the immersed weight of the grain. By making a balance of
forces,Fd1F f50, the velocity of the grain can be found

ug5juf S 12AUuc

u U D , ~9!

where

uc5
4m

3CDj2
~10!

is the critical Shields parameter. Usually,m5tanf'0.65.14

2. The initial spacing of grains

Now that the velocity of the grains has been calculated,
it still remains to determine the number of grains per arean
in motion. To this end, a small volume of moving sand at the
top of the flat bed is considered. The balance of the forces
acting on this volume is written as

tb5tG1tc . ~11!

The interpretation of the terms is as follows: The parameter
tb is the shear stress on the top of the bed load layer. It is
assumed that this is equal to the shear stress on a fixed flat
bed.tG is the stress arising from the intergranular collisions,
giving rise to ‘‘grain stresses’’18 modeled astG5nmW. It is
assumed that the intergranular stress absorbs all the stress
except the critical stresstc ; this is the so-called ‘‘Bagnold
hypothesis.’’18 Making Eq.~11! nondimensional by dividing
with r(s21)gd, the number of grains in motion is found as

n5
6

pd2m
~u2uc!. ~12!

If u,uc , then there are no grains in motion andn50. n can
also be viewed as the initial density of grains, and by assum-
ing a square packing of the grains the initial distance be-
tween the grains becomes

l i

d
5

1

And
, ~13!

5A pm

6~u2uc!
. ~14!

3. The length of the shadow zone

The last parameteras , which characterizes the length of
the shadow zone, is estimated by exploring the analogy with
the backward facing step, which was suggested in Sec. II. In
the backward facing step there is a zone with flow separation
which extends approximately 6 step heights from the step;
see Fig. 5. After approximately 16 step heights there is a
point where the shear stress has a small maximum. The
length of the shadow zone should be longer than the separa-
tion zone, but shorter than the point of the maximum in the
shear stress, i.e., 6,as,16.

B. Numerical and analytical solutions of the model

In the following section the behavior of the model is
examined. To study the detailed behavior the set of coupled
ordinary differential equations~4! is integrated numerically.
It will be demonstrated that the model reaches a steady state,
and an analytical expression for the spacing between the
ripples in the steady state is developed.

The numerical simulations in this section are based on a
simple example withag /d535 andl i /d53.23 andas is set
to 10. As initial condition all particles have an area of 1.0
610%, to add some perturbation. The initial number of par-
ticles N in this example is 800.

In the first few periods a lot of grains are colliding and
merging~Fig. 6!. As the ripples are formed and grow bigger,

FIG. 5. A sketch of the shear stress,t, on the bed during a steady flow over
a backward facing step with heighth.

FIG. 6. Zoom of the movement of the particles in the first two wave periods.
ag /d535, l f53.23, andas510.0.
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the evolution slows down, until a steady state is reached
~Fig. 7!. The spacing between the ripples in the steady state
shows some scatter around the average value, which is also
observed in experiments. The variation in the average spac-
ing at the steady state,leq , for realizations with different
initial random seed turned out to be on the order of 1/Neq

whereNeq is the final number of ripples.
To study the behavior of the average spacing of the

ripples, a number of simulations are made where the param-
eters are varied one at a time. Each run is started from the
initially disordered state.

Changingag /d only results in a minor change in the
spacing of the ripples@Fig. 8~a!#. The final spacing between
the ripples does depend on the length of the shadow zone
as ; the longer the shadow zone, the larger the wavelength of
the ripples@Fig. 8~b!#. This can be used to estimate the av-
erage equilibrium spacing between the ripples. When the dis-
tance between two ripples is longer than the shadow zone of
the ripples, they are no longer able to interact. This gives

leq.asheq , ~15!

where subscripteq denotes an average value at equilibrium.
However, if the spacing between two ripples is just barely
shorter than Eq.~15!, they will be able to interact and even-
tually they will merge. One can therefore expect to find spac-
ings up toleq52asheq . Assuming that the average length is
in between the two bounds, one gets

leq5gasheq , 1,g,2, ~16!

whereg can be found by comparing the results from the full
simulations with Eq.~16!. The height of the ripples at equi-
librium can be found by splitting the initial number of par-
ticles evenly onto the equilibrium ripples. Then the average
area at equilibrium isAeq5leq /l id

2 and from Eq.~2! it
follows that the height isheq /d5Atanf leq /l i , which
gives an average equilibrium spacing

leq

d
5g2

as
2d tanf

l i
5as

2g2A6 tanf

p
Au2uc. ~17!

The equilibrium spacing is therefore found to be proportional
to Au2uc with the constant of proportionality being made
up of as , g, and various geometrical factors. All the quan-
tities related to the dynamical evolution of the ripples, i.e.,
the velocity of the ripples, the shape of the functionf (Dx),
etc. do not enter into the expression.

C. Comparison with experiments

The only parameter that has not been accurately deter-
mined isas . The value of this parameter can be estimated by
comparison with measurements.

In 1976, Sleath made a series of experiments, measuring
the spacing between rolling grain ripples.7 The ripples were
formed on a flat tray oscillating in still water using sand of
two different grain sizes: 0.4 and 1.14 mm. To compare with
the experiments the value ofu must be calculated.u reflects
the number of grains in motion, and it is assumed that the
grains which are set in motion when the shear stress on the
bed is at a maximum are kept in motion throughout the wave
period. Therefore, the maximum value of the Shields param-
eter during the period,umax, is used. To evaluateumax, the

FIG. 7. The development of the particles until steady state is reached. The
lines show the positions of the particles at the end of each period.

FIG. 8. The spacing between the rolling grain ripples at equilibrium as a
function of the initial density of grains. The basic example is shown with the
circles: ag /d535 andas510.0. In ~a! the value ofag /d is varied, for
pluses:ag /d520, crosses:ag /d550. In ~b! as is varied; pluses:as57,
crosses:as513.

FIG. 9. Comparison between the measured wave lengths of rolling grain
ripples~circles! ~Ref. 7!, with results from the model~pluses!, and from Eq.
~16! with g51.40 ~the line!. The value ofas is 15.0. The critical Shields
parameter is 0.04 andm50.65.
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shear stress on the bed has to be estimated. The maximum
shear stress on the bed,tmax, during a wave period can be
found using the concept of a constant friction factorf w:20

tmax5
1
2r f wumax

2 , ~18!

with umax being the maximum near-bed velocity. The friction
factor can be estimated using the empirical relation14

f w50.04S a

kN
D 20.25

, ~19!

wherea5umaxv andkN.d.
In this way the range of Shields parameters in the ex-

periments was found to be from the critical Shields param-
eter tou50.42. For the high Shields parameters the rolling
grain ripples were reported to be very unstable and quickly
to develop into vortex ripples. In these cases, the measured
ripple spacing then reflects the spacing between the rolling
grain ripples before they developed into vortex ripples.7

In Fig. 9 the experimental results are compared with runs
of the model usingas515.0 ~the reason for this particular
value will be shown shortly! and N510 000. By fitting all
the runs to Eq.~16! it was found thatg51.40. The results
using Eq.~17! andg51.40 are shown with a line.

First, it is seen that Eq.~17! predicts the results from the
full model Eq. ~4! well. The correspondence between the
model and the experiments is reasonable, but there are some
systematic discrepancies, which will be discussed.

There are a few points with small ripple spacing for
which the model does not fit the measurements. These mea-
surements have a Shields parameter very near the critical
~i.e., just around the onset of grain motion!, which implies
some additional complications. The grains used in the ex-
periment were not of a uniform size; rather, they were part of
a distribution of grain sizes, and the grain size reported is
then the median of the distribution,d50. The Shields param-
eter is calculated using the median of the distribution, but
actually one could calculate a Shields parameter for different
fractions of the distribution, thus creating au10, a u50, etc.
Whenu50 is smaller than the critical Shields parameter,u10

might still be higher than the critical Shields parameter. This
implies that grains with a diameter smaller thand50 will be in
motion, while the larger grains will stay in the bed. As only
d50 is used in the calculation of the equilibrium ripple spac-
ing, the distance between the grainsl i will be overestimated
near the critical Shields parameter, where the effect of the
polydispersity is expected to be strongest. An overestimation
of l i will lead to an underprediction of the ripple length,
which is exactly what is seen in Fig. 9.

There are also three points from the experiments taken at
very large Shields parameters that are not well predicted by
the model. As already mentioned, these points are probably
doubtful because of the very fast growth of vortex ripples. It
is therefore reasonable to assume that vortex ripples invaded
the rolling grain ripples before these had time to reach their
full length.

To find a reasonable value ofas Eq. ~17! was fitted to
the experimental points. To avoid the points which might be
of doubtful quality, as discussed above, only the points in the

range 0.075,u,0.3 were used. This gave the value ofas

515.0, in agreement with the qualitative arguments in Sec.
III A 3.

IV. DISCUSSION OF THE RESULTS

From the comparison of the model with measurements
the model confidently reproduces the experiments.

In the model the number of grains in motion is constant
~even though the number of particles changes!. In an experi-
mental situation, however, new grains might be lifted from
the bed and added to the initial number of grains in motion.
As the part of the flat bed between the ripples is covered by
the shadow zones of the particles, these stretches will be
shielded from the full force of the flow, and only very slowly
will new grains be loosened here. This small addition of new
grains will result in a slow growth of the rolling grain
ripples, and they eventually grow into vortex ripples. This
slow growth is very well illustrated by recent
measurements,2 but not covered by the present model.

V. CONCLUSION

In conclusion, a model has been created which explains
the creation and the equilibrium state of rolling grain ripples
of the type described by Bagnold. The final distance between
the ripples is proportional toAu2uc. The model has been
compared with measurements with reasonable agreement.
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