279 research outputs found

    MOULDED, PLASTIC PGA PACKAGES

    Get PDF
    The increase of the size of le chips and the numbers of the pins made it necessary to develop a new kind of package a couple of years ago. PGA packages have appeared and have been used. The authors of this article present a new type of plastic PGA construction. The technology of the package combines the advantages of the production of moulding technologies of packages with PWB. The new plastic PGA package has good electrical and thermal properties and it is cheap. The construction and technology used allow to meet the demands of individual consumers as well - by shortening the time from design to manufacturing. The article describes in detail the testing of the thermal properties of the plastic PGA package

    Vienna Circle and Logical Analysis of Relativity Theory

    Full text link
    In this paper we present some of our school's results in the area of building up relativity theory (RT) as a hierarchy of theories in the sense of logic. We use plain first-order logic (FOL) as in the foundation of mathematics (FOM) and we build on experience gained in FOM. The main aims of our school are the following: We want to base the theory on simple, unambiguous axioms with clear meanings. It should be absolutely understandable for any reader what the axioms say and the reader can decide about each axiom whether he likes it. The theory should be built up from these axioms in a straightforward, logical manner. We want to provide an analysis of the logical structure of the theory. We investigate which axioms are needed for which predictions of RT. We want to make RT more transparent logically, easier to understand, easier to change, modular, and easier to teach. We want to obtain deeper understanding of RT. Our work can be considered as a case-study showing that the Vienna Circle's (VC) approach to doing science is workable and fruitful when performed with using the insights and tools of mathematical logic acquired since its formation years at the very time of the VC activity. We think that logical positivism was based on the insight and anticipation of what mathematical logic is capable when elaborated to some depth. Logical positivism, in great part represented by VC, influenced and took part in the birth of modern mathematical logic. The members of VC were brave forerunners and pioneers.Comment: 25 pages, 1 firgure

    Solving non-uniqueness in agglomerative hierarchical clustering using multidendrograms

    Full text link
    In agglomerative hierarchical clustering, pair-group methods suffer from a problem of non-uniqueness when two or more distances between different clusters coincide during the amalgamation process. The traditional approach for solving this drawback has been to take any arbitrary criterion in order to break ties between distances, which results in different hierarchical classifications depending on the criterion followed. In this article we propose a variable-group algorithm that consists in grouping more than two clusters at the same time when ties occur. We give a tree representation for the results of the algorithm, which we call a multidendrogram, as well as a generalization of the Lance and Williams' formula which enables the implementation of the algorithm in a recursive way.Comment: Free Software for Agglomerative Hierarchical Clustering using Multidendrograms available at http://deim.urv.cat/~sgomez/multidendrograms.ph

    Comparing theories: the dynamics of changing vocabulary. A case-study in relativity theory

    Full text link
    There are several first-order logic (FOL) axiomatizations of special relativity theory in the literature, all looking essentially different but claiming to axiomatize the same physical theory. In this paper, we elaborate a comparison, in the framework of mathematical logic, between these FOL theories for special relativity. For this comparison, we use a version of mathematical definability theory in which new entities can also be defined besides new relations over already available entities. In particular, we build an interpretation of the reference-frame oriented theory SpecRel into the observationally oriented Signalling theory of James Ax. This interpretation provides SpecRel with an operational/experimental semantics. Then we make precise, "quantitative" comparisons between these two theories via using the notion of definitional equivalence. This is an application of logic to the philosophy of science and physics in the spirit of Johan van Benthem's work.Comment: 27 pages, 8 figures. To appear in Springer Book series Trends in Logi

    Cross-verification of thermal characterisation of a micro-cooler

    Get PDF
    The thermal behaviour of a micro-cooler has beeninvestigated using two different measurement methods to verifytheir feasibility. The measurement sample was a square nickelplate micro-cooler holding 128 micro-channels in radialarrangement. In our previous studies it was attached to a powertransistor which was used as a dissipator and a temperaturesensor. The thermal transient response to a dissipation step of thetransistor was recorded in the measurement. The measuredtransients (cooling curves) were transformed into structurefunctions from which the partial thermal resistancecorresponding to the cooling assembly was identified. In thecurrent study the measurement setup was completed by a heat-flux sensor in between the dissipator and the micro-cooler to beable to verify the results extracted via structure functions

    Twin Paradox and the logical foundation of relativity theory

    Full text link
    We study the foundation of space-time theory in the framework of first-order logic (FOL). Since the foundation of mathematics has been successfully carried through (via set theory) in FOL, it is not entirely impossible to do the same for space-time theory (or relativity). First we recall a simple and streamlined FOL-axiomatization SpecRel of special relativity from the literature. SpecRel is complete with respect to questions about inertial motion. Then we ask ourselves whether we can prove usual relativistic properties of accelerated motion (e.g., clocks in acceleration) in SpecRel. As it turns out, this is practically equivalent to asking whether SpecRel is strong enough to "handle" (or treat) accelerated observers. We show that there is a mathematical principle called induction (IND) coming from real analysis which needs to be added to SpecRel in order to handle situations involving relativistic acceleration. We present an extended version AccRel of SpecRel which is strong enough to handle accelerated motion, in particular, accelerated observers. Among others, we show that the Twin Paradox becomes provable in AccRel, but it is not provable without IND.Comment: 24 pages, 6 figure

    Improved extended-range prediction of persistent stratospheric perturbations using machine learning

    Get PDF
    On average every 2 years, the stratospheric polar vortex exhibits extreme perturbations known as sudden stratospheric warmings (SSWs). The impact of these events is not limited to the stratosphere: but they can also influence the weather at the surface of the Earth for up to 3 months after their occurrence. This downward effect is observed in particular for SSW events with extended recovery timescales. This long-lasting stratospheric impact on surface weather can be leveraged to significantly improve the performance of weather forecasts on timescales of weeks to months. In this paper, we present a fully data-driven procedure to improve the performance of long-range forecasts of the stratosphere around SSW events with an extended recovery. We first use unsupervised machine learning algorithms to capture the spatio-temporal dynamics of SSWs and to create a continuous scale index measuring both the frequency and the strength of persistent stratospheric perturbations. We then uncover three-dimensional spatial patterns maximizing the correlation with positive index values, allowing us to assess when and where statistically significant early signals of SSW occurrence can be found. Finally, we propose two machine learning (ML) forecasting models as competitors for the state-of-the-art sub-seasonal European Centre for Medium-Range Weather Forecasts (ECMWF) numerical prediction model S2S (sub-seasonal to seasonal): while the numerical model performs better for lead times of up to 25 d, the ML models offer better predictive performance for greater lead times. We leverage our best-performing ML forecasting model to successfully post-process numerical ensemble forecasts and increase their performance by up to 20 %.</p

    Are evolutionary transitions in sexual size dimorphism related to sex determination in reptiles?

    Get PDF
    Sex determination systems are highly variable in vertebrates, although neither the causes nor the implications of this diversity are fully understood. Theory suggests that sex determination is expected to relate to sexual size dimorphism, because environmental sex determination promotes sex-specific developmental bias in embryonic growth rates. Furthermore, selection for larger size in one sex or the other has been proposed to drive the evolution of different genetic sex determination systems. Here, we investigate whether sex determination systems relate to adult sexual size dimorphism, using 250 species of reptiles (Squamata, Testudines and Crocodylia) representing 26 families. Using phylogenetically informed analyses, we find that sexual size dimorphism is associated with sex determination: species with TSDIa sex determination (i.e. in which the proportion of female offspring increases with incubation temperature) have more female-biased size dimorphism than species with TSDII (i.e. species in which males are produced at mid temperatures). We also found a trend that species with TSD ancestors had more male-biased size dimorphism in XY sex chromosome systems than in ZW sex chromosome systems. Taken together, our results support the prediction that sexual size dimorphism is linked to sex-dependent developmental variations caused by environmental factors and also by sex chromosomes. Since the extent of size dimorphism is related to various behavioural, ecological and life-history differences between sexes, our results imply profound impacts of sex determination systems for vertebrate diversity

    Extensive Spectroscopy and Photometry of the Type IIP Supernova 2013ej

    Get PDF
    We present extensive optical (UBVRIUBVRI, grizg'r'i'z', and open CCD) and near-infrared (ZYJHZYJH) photometry for the very nearby Type IIP SN ~2013ej extending from +1 to +461 days after shock breakout, estimated to be MJD 56496.9±0.356496.9\pm0.3. Substantial time series ultraviolet and optical spectroscopy obtained from +8 to +135 days are also presented. Considering well-observed SNe IIP from the literature, we derive UBVRIJHKUBVRIJHK bolometric calibrations from UBVRIUBVRI and unfiltered measurements that potentially reach 2\% precision with a BVB-V color-dependent correction. We observe moderately strong Si II λ6355\lambda6355 as early as +8 days. The photospheric velocity (vphv_{\rm ph}) is determined by modeling the spectra in the vicinity of Fe II λ5169\lambda5169 whenever observed, and interpolating at photometric epochs based on a semianalytic method. This gives vph=4500±500v_{\rm ph} = 4500\pm500 km s1^{-1} at +50 days. We also observe spectral homogeneity of ultraviolet spectra at +10--12 days for SNe IIP, while variations are evident a week after explosion. Using the expanding photosphere method, from combined analysis of SN 2013ej and SN 2002ap, we estimate the distance to the host galaxy to be 9.00.6+0.49.0_{-0.6}^{+0.4} Mpc, consistent with distance estimates from other methods. Photometric and spectroscopic analysis during the plateau phase, which we estimated to be 94±794\pm7 days long, yields an explosion energy of 0.9±0.3×10510.9\pm0.3\times10^{51} ergs, a final pre-explosion progenitor mass of 15.2±4.215.2\pm4.2~M_\odot and a radius of 250±70250\pm70~R_\odot. We observe a broken exponential profile beyond +120 days, with a break point at +183±16183\pm16 days. Measurements beyond this break time yield a 56^{56}Ni mass of 0.013±0.0010.013\pm0.001~M_\odot.Comment: 29 pages, 23 figures, 15 tables, Published in The Astrophisical Journa

    Irreducible decomposition of Gaussian distributions and the spectrum of black-body radiation

    Get PDF
    It is shown that the energy of a mode of a classical chaotic field, following the continuous exponential distribution as a classical random variable, can be uniquely decomposed into a sum of its fractional part and of its integer part. The integer part is a discrete random variable (we call it Planck variable) whose distribution is just the Bose distribution yielding the Planck law of black-body radiation. The fractional part is the dark part (we call is dark variable) with a continuous distribution, which is, of course, not observed in the experiments. It is proved that the Bose distribution is infinitely divisible, and the irreducible decomposition of it is given. The Planck variable can be decomposed into an infinite sum of independent binary random variables representing the binary photons (more accurately photo-molecules or photo-multiplets) of energies 2^s*h*nu with s=0,1,2... . These binary photons follow the Fermi statistics. Consequently, the black-body radiation can be viewed as a mixture of statistically and thermodynamically independent fermion gases consisting of binary photons. The binary photons give a natural tool for the dyadic expansion of arbitrary (but not coherent) ordinary photon excitations. It is shown that the binary photons have wave-particle fluctuations of fermions. These fluctuations combine to give the wave-particle fluctuations of the original bosonic photons expressed by the Einstein fluctuation formula.Comment: 29 page
    corecore